Elena Kriukova, Mikhail Mazurenka, Sabrina Marcazzan, Sarah Glasl, Michael Quante, Dieter Saur, Markus Tschurtschenthaler, Gerwin J. Puppels, Dimitris Gorpas, Vasilis Ntziachristos
{"title":"Hybrid Raman and Partial Wave Spectroscopy Microscope for the Characterization of Molecular and Structural Alterations in Tissue","authors":"Elena Kriukova, Mikhail Mazurenka, Sabrina Marcazzan, Sarah Glasl, Michael Quante, Dieter Saur, Markus Tschurtschenthaler, Gerwin J. Puppels, Dimitris Gorpas, Vasilis Ntziachristos","doi":"10.1002/jbio.202400330","DOIUrl":"10.1002/jbio.202400330","url":null,"abstract":"<p>We present a hybrid Raman spectroscopy (RS) and partial wave spectroscopy (PWS) microscope for the characterization of molecular and structural tissue alterations. The PWS performance was assessed with surface roughness standards, while the Raman performance with a silicon crystal standard. We also validated the system on stomach and intestinal mouse tissues, two closely-related tissue types, and demonstrate that the addition of PWS information improves RS data classification for these tissue types from R<sup>2</sup> = 0.892 to R<sup>2</sup> = 0.964 (norm of residuals 0.863 and 0.497, respectively). Then, in a proof-of-concept experiment, we show that the hybrid system can detect changes in intestinal tissues harvested from a tumorigenic <i>Villin</i>-Cre, <i>Apc</i><sup>fl/wt</sup> mouse. We discuss how the hybrid modality offers new abilities to identify the relative roles of PWS morphological features and Raman molecular fingerprints, possibly allowing for their combination to enhance the study of carcinogenesis and early cancer diagnostics in the future.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400330","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dharsini Narayana Moorthy, Durgalakshmi Dhinasekaran, P. N. Blessy Rebecca, Ajay Rakkesh Rajendran
{"title":"Optical Biosensors for Detection of Cancer Biomarkers: Current and Future Perspectives","authors":"Dharsini Narayana Moorthy, Durgalakshmi Dhinasekaran, P. N. Blessy Rebecca, Ajay Rakkesh Rajendran","doi":"10.1002/jbio.202400243","DOIUrl":"10.1002/jbio.202400243","url":null,"abstract":"<div>\u0000 \u0000 <p>Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Li, Yi Lin, Boyi Li, Ting Feng, Dan Li, Ying Li, Yi Wu, Dean Ta
{"title":"Enhancing Ischemic Stroke Evaluation by a Model-Based Photoacoustic Tomography Algorithm","authors":"Yuanyuan Li, Yi Lin, Boyi Li, Ting Feng, Dan Li, Ying Li, Yi Wu, Dean Ta","doi":"10.1002/jbio.202400203","DOIUrl":"10.1002/jbio.202400203","url":null,"abstract":"<div>\u0000 \u0000 <p>Ischemic stroke (IS) is characterized by the sudden interruption of blood supply to the brain, resulting in neurological impairments and even mortality. Photoacoustic computed tomography (PACT) integrates the high contrast of optical imaging and the penetration of ultrasound imaging, enabling non-invasive IS evaluation. However, the image reconstruction quality significantly affects the oxyhemoglobin saturation (sO<sub>2</sub>) estimation. This study investigates a model-based with total variation minimized by augmented Lagrangian and alternating direction (MB-TVAL3) approach and compared it with the widely used back-projection (BP) and delay-and-sum (DAS) algorithms. Both simulations and in vivo experiments are conducted to validate the performance of the MB-TVAL3 algorithm, showing a higher sO<sub>2</sub> estimation accuracy and sensitivity in detecting infarct area compared to BP and DAS. The findings of this study emphasize the impact of acoustic inverse problem on the accuracy of sO<sub>2</sub> estimation and the proposed approach offers valuable support for IS evaluation and cerebrovascular diagnosis.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minghui Chen, Yue Shen, Jianguo Zhu, Tingwei Su, Yifei Zhang, Weiqing Wang, Chang Chen, Lin Zhou
{"title":"Assessment of Optical Attenuation and Skin Thickness in Type 2 Diabetes Mellitus Patients Using Optical Coherence Tomography","authors":"Minghui Chen, Yue Shen, Jianguo Zhu, Tingwei Su, Yifei Zhang, Weiqing Wang, Chang Chen, Lin Zhou","doi":"10.1002/jbio.202400267","DOIUrl":"10.1002/jbio.202400267","url":null,"abstract":"<p>Diabetes management often involves invasive blood glucose monitoring, which can be uncomfortable for patients. Non-invasive techniques like multiple μ-spatially offset Raman spectroscopy (mμSORS) offer a promising alternative. To provide clinical data supporting mμSORS, we conducted a clinical trial with 198 participants to evaluate mμSORS for non-invasive blood glucose measurement. Using Optical Coherence Tomography, we studied skin thickness and optical attenuation in 172 diabetic and 26 healthy subjects. Results showed thicker stratum corneum and stratum spinosum (SS) in diabetics. Epidermal thickness increased with age and body mass index (BMI), decreased with skin brightness, and varied minimally with gender. Optical attenuation in SS was lower in diabetics, decreased with increasing a*, and was minimally affected by gender and BMI but increased with age in the upper dermis. These findings support mμSORS for accurate non-invasive glucose monitoring.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400267","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Vivo Imaging and Evaluation of Corneal Biomechanics After Corneal Transplantation by Optical Coherence Elastography","authors":"Gang Shi, Yubao Zhang, Sizhu Ai, Yidi Wang, Yingji Li, Xingdao He, Xinhe Zheng","doi":"10.1002/jbio.202400207","DOIUrl":"10.1002/jbio.202400207","url":null,"abstract":"<div>\u0000 \u0000 <p>Postoperative corneal biomechanical evaluation is of great significance in clinical monitoring and management since corneal transplantation is one of the main methods to improve visual function. In this paper, we propose an OCE system based on a small ultrasound transducer to realize the in vivo detection of postoperative corneal elasticity in different directions. It was first validated and analyzed by different agar, and then the elasticity changes in normal cornea and post-transplant corneal implants and implant beds were further investigated. Compared with normal corneas, the shear wave velocity of the postoperative cornea decreased from 7.42 ± 1.71 m/s to 4.95 ± 0.35 m/s. Meanwhile, the shear wave velocity of the corneal implant bed was lower than that of the implanted sheet. Therefore, this study reports the first biomechanical measurement of corneal grafts based on the OCE technique, which might provide a potential tool for the postoperative evaluation of clinical patients.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao Yizhuo, Ren Yu, Cai Hongxing, Wang Tingting, Li Dongliang, Wang Yu, Liu Jianguo, Li Teng, Hua Yangyang
{"title":"A Study of Data Processing Methods for Non-Contact Multispectral Method of Blood Oxygen Saturation","authors":"Zhao Yizhuo, Ren Yu, Cai Hongxing, Wang Tingting, Li Dongliang, Wang Yu, Liu Jianguo, Li Teng, Hua Yangyang","doi":"10.1002/jbio.202400338","DOIUrl":"10.1002/jbio.202400338","url":null,"abstract":"<div>\u0000 \u0000 <p>Regular monitoring of blood oxygenation is important for disease prevention and treatment. Image photoplethysmography (IPPG) technology is a non-contact physiological parameter detection technology, which has been widely used in blood oxygenation detection. However, traditional imaging devices still have issues such as low detection accuracy, narrower receiving spectral range. In this paper, we proposed two improved detection methods based on the dual-wavelength measurement principle, that is, dual-band IPPG signal ratio method and dual-band IPPG signal AC/DC method. To verify the effectiveness of the two methods, we used different heartbeat period IPPG signals as sample data sets, and combined PLS and RF algorithms for model training, thus obtaining the best data processing method. The experimental results showed that the dual-band IPPG signal AC/DC method can effectively reduce the model training time. This method meets the strong demand for non-contact blood oxygen measurement and provides a new measurement idea.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging Broad-Spectrum Fluorescence Data and Machine Learning for High-Accuracy Bacterial Species Identification","authors":"Daisuke Mito, Shin-ichiro Okihara, Masakazu Kurita, Nami Hatayama, Yusuke Yoshino, Yoshinobu Watanabe, Katsuhiro Ishii","doi":"10.1002/jbio.202400300","DOIUrl":"10.1002/jbio.202400300","url":null,"abstract":"<div>\u0000 \u0000 <p>Rapid and accurate identification of bacterial species is essential for the effective treatment of infectious diseases and suppression of antibiotic-resistant strains. The unique autofluorescence properties of bacterial cells are exploited for rapid and cost-effective identification that is suitable for point-of-care applications. Fluorescence spectroscopy is combined with machine learning to improve the diagnostic accuracy. Good training data for machine learning can be obtained to achieve the same diagnostic accuracy for bacterial species as when each wavelength is measured in detail over a broad spectral width. Experiments were performed testing 14 bacterial strains. The excitation-emission matrix was analyzed, and Bayesian optimization was used to identify the most effective combinations of wavelengths. The results showed that fluorescence spectra using three specific excitation light regions or excitation spectra using two broad fluorescence detection regions could be used as supervised data to realize diagnostic accuracy comparable to that obtained with more complex instruments.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliana Sales Rodrigues Costa, Gabriela Silva, Isabela Carvalho Guimarães, Luis Filipe Rocha Silva, Saulo Soares da Silva, João Paulo de Paula Almeida, Cândido Celso Coimbra, Nivaldo Antonio Parizotto, Fernando Gripp, Marco Fabrício Dias-Peixoto, Elizabethe Adriana Esteves, Fabiano Trigueiro Amorim, Cleber Ferraresi, Flavio de Castro Magalhaes
{"title":"Photobiomodulation Enhances the Effect of Strength Training on Insulin Resistance Regardless of Exercise Volume in Mice Fed a High-Fat Diet","authors":"Juliana Sales Rodrigues Costa, Gabriela Silva, Isabela Carvalho Guimarães, Luis Filipe Rocha Silva, Saulo Soares da Silva, João Paulo de Paula Almeida, Cândido Celso Coimbra, Nivaldo Antonio Parizotto, Fernando Gripp, Marco Fabrício Dias-Peixoto, Elizabethe Adriana Esteves, Fabiano Trigueiro Amorim, Cleber Ferraresi, Flavio de Castro Magalhaes","doi":"10.1002/jbio.202400274","DOIUrl":"10.1002/jbio.202400274","url":null,"abstract":"<div>\u0000 \u0000 <p>The aim was to investigate the effects of different volumes of strength training (ST) in association with photobiomodulation (PBMt) in mice fed a high-fat diet (HFD) on insulin resistance (IR). Male Swiss albino mice were fed HFD and performed high- or low-volume (one-third) ST (3 days/week), associated with PBMt (660 nm + 850 nm; ~42 J delivered) or not (lights off). ST improved IR, lowered visceral adiposity and circulating cytokines, and increased skeletal muscle hypertrophy and mitochondrial activity. The smaller volume of ST did not interfere with the improvement in IR, mitochondrial activity, or inflammatory profile, but exerted a smaller effect on visceral adiposity and skeletal muscle hypertrophy. Association with PBMt further improved IR, regardless of ST volume, although it did not affect adiposity, mitochondrial activity, and the inflammatory profile. Interestingly, PBMt positively affected quadriceps, but attenuated gluteus maximus hypertrophy. The association with PBMt induced greater improvement than ST alone.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative Evaluation of Human Lens and Lens Capsule Elasticity by Optical Coherence Elastography Based on a Rayleigh Wave Model","authors":"Gang Shi, Yubao Zhang, Yidi Wang, Sizhu Ai, Chaozhong Zhang, Xingdao He, Xinhe Zheng","doi":"10.1002/jbio.202400322","DOIUrl":"10.1002/jbio.202400322","url":null,"abstract":"<div>\u0000 \u0000 <p>Evaluating the biomechanical properties of the lens and lens capsule is important for the clinical diagnosis and treatment of age-related cataracts and presbyopia. In this study, we developed an optical coherent elastography technique to assess the elasticity of the lens and lens capsule in the human eye. With age, the mean Young's modulus of the lens increased from 12.28 ± 0.87 kPa to 18.59 ± 1.45 kPa, and the lens capsule increased from 6.33 ± 0.36 kPa to 13.33 ± 0.74 kPa. The results showed that the Young's modulus of the lens capsule and lens increased with age, with the Young's modulus of the lens significantly higher than that of the lens capsule. This study reports the assessment of the elasticity of the human lens and lens capsule by the OCE technique, indicating that it may provide a potential clinical tool for advancing research on diseases affecting the lens.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lara Maria Bataglia Espósito, Maria Carolina Derencio Oliveira, Luis Henrique Oliveira de Moraes, Camila Pereira Sabadini, Krissia Franco de Godoy, Rafael Afonso Derencio Oliveira, Ana Cláudia Garcia de Oliveira Duarte, Fernanda de Freitas Anibal, Gerson Jhonatan Rodrigues, Patricia Brassolatti, Richard Eloin Liebano
{"title":"Photobiomodulation on Full-Thickness Skin Graft Survival in Rats","authors":"Lara Maria Bataglia Espósito, Maria Carolina Derencio Oliveira, Luis Henrique Oliveira de Moraes, Camila Pereira Sabadini, Krissia Franco de Godoy, Rafael Afonso Derencio Oliveira, Ana Cláudia Garcia de Oliveira Duarte, Fernanda de Freitas Anibal, Gerson Jhonatan Rodrigues, Patricia Brassolatti, Richard Eloin Liebano","doi":"10.1002/jbio.202400285","DOIUrl":"10.1002/jbio.202400285","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>To evaluate the photobiomodulation effects on the receptor area for full-thickness skin graft integration.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Thirty-Six Wistar rats were divided: red laser (660 nm), infrared laser (808 nm), and control. A skin segment with 5 × 3 cm was removed. In the control, the skin was reallocated after a 180° rotation. For the 660 nm and 808 nm, the receptor area was first irradiated, and then the skin was reallocated the same as the control. Euthanasia occurred on the third and seventh days after the procedure, and macroscopical of necrosis and histological analysis were realized.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The 660 nm reached the lowest necrosis percentage on Day 7. In the 808 nm, necrosis increased between the two periods. Similar morphological findings were observed for the control and 660 nm; however, the 808 nm showed significant alterations in fibrosis and inflammatory infiltrate.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>The infrared wavelength showed inferior performance on skin graft integration compared to the control and the red wavelength.</p>\u0000 </section>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}