肝细胞癌与肝内胆管癌鉴别的高光谱成像。

Yunze Li, Haiyan Chen, Wei Li, Meng Yu, Jinlin Deng, Qize Lv, Yifei Liu, Shuai Gao
{"title":"肝细胞癌与肝内胆管癌鉴别的高光谱成像。","authors":"Yunze Li, Haiyan Chen, Wei Li, Meng Yu, Jinlin Deng, Qize Lv, Yifei Liu, Shuai Gao","doi":"10.1002/jbio.202500227","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposed an intelligent intraoperative diagnostic framework that combines hyperspectral imaging (HSI) with deep reinforcement learning to accurately differentiate hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), the two main subtypes of primary liver cancer. To address the limitations of conventional imaging techniques and serum biomarkers, the authors constructed the first clinical HSI dataset of liver tumors (n = 131, spectral range 400-1000 nm). The proposed method integrates a 3D residual neural network (3D-ResNet) with a Proximal Policy Optimization (PPO)-based reinforcement learning algorithm, framing spectral band selection as a Markov decision process. An intraclass constrained cross-entropy loss further enhances class separability and compactness. Experimental results demonstrate a classification accuracy of 95%, outperforming traditional band selection approaches. This framework enables rapid, real-time tumor subtyping during surgery, addressing the critical clinical need for timely and accurate liver cancer diagnosis, and offers a promising tool for advancing precision oncology and improving intraoperative decision making.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500227"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Imaging for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Differentiation.\",\"authors\":\"Yunze Li, Haiyan Chen, Wei Li, Meng Yu, Jinlin Deng, Qize Lv, Yifei Liu, Shuai Gao\",\"doi\":\"10.1002/jbio.202500227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposed an intelligent intraoperative diagnostic framework that combines hyperspectral imaging (HSI) with deep reinforcement learning to accurately differentiate hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), the two main subtypes of primary liver cancer. To address the limitations of conventional imaging techniques and serum biomarkers, the authors constructed the first clinical HSI dataset of liver tumors (n = 131, spectral range 400-1000 nm). The proposed method integrates a 3D residual neural network (3D-ResNet) with a Proximal Policy Optimization (PPO)-based reinforcement learning algorithm, framing spectral band selection as a Markov decision process. An intraclass constrained cross-entropy loss further enhances class separability and compactness. Experimental results demonstrate a classification accuracy of 95%, outperforming traditional band selection approaches. This framework enables rapid, real-time tumor subtyping during surgery, addressing the critical clinical need for timely and accurate liver cancer diagnosis, and offers a promising tool for advancing precision oncology and improving intraoperative decision making.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合高光谱成像(HSI)和深度强化学习的智能术中诊断框架,以准确区分原发性肝癌的两种主要亚型肝细胞癌(HCC)和肝内胆管癌(ICC)。为了解决传统成像技术和血清生物标志物的局限性,作者构建了第一个肝脏肿瘤临床HSI数据集(n = 131,光谱范围400-1000 nm)。该方法将三维残差神经网络(3D- resnet)与基于近端策略优化(PPO)的强化学习算法相结合,将频谱选择作为马尔可夫决策过程。类内约束交叉熵损失进一步增强了类的可分性和紧性。实验结果表明,该方法的分类准确率达到95%,优于传统的波段选择方法。该框架能够在手术过程中实现快速、实时的肿瘤分型,满足及时、准确诊断肝癌的关键临床需求,并为推进精确肿瘤学和改善术中决策提供了一个有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Imaging for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Differentiation.

This study proposed an intelligent intraoperative diagnostic framework that combines hyperspectral imaging (HSI) with deep reinforcement learning to accurately differentiate hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), the two main subtypes of primary liver cancer. To address the limitations of conventional imaging techniques and serum biomarkers, the authors constructed the first clinical HSI dataset of liver tumors (n = 131, spectral range 400-1000 nm). The proposed method integrates a 3D residual neural network (3D-ResNet) with a Proximal Policy Optimization (PPO)-based reinforcement learning algorithm, framing spectral band selection as a Markov decision process. An intraclass constrained cross-entropy loss further enhances class separability and compactness. Experimental results demonstrate a classification accuracy of 95%, outperforming traditional band selection approaches. This framework enables rapid, real-time tumor subtyping during surgery, addressing the critical clinical need for timely and accurate liver cancer diagnosis, and offers a promising tool for advancing precision oncology and improving intraoperative decision making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信