{"title":"High-Efficiency Targeted Gene Transfection of Cells Using Temporal and Spatial Shaping Femtosecond Laser Irradiation.","authors":"Baoshan Guo, Ziyan Song","doi":"10.1002/jbio.202400409","DOIUrl":"10.1002/jbio.202400409","url":null,"abstract":"<p><p>Laser-irradiation-assisted cell gene transfection is sterile and nontoxic, but the low transfection efficiency cannot meet the application requirements. To improve the efficiency, a temporal and spatial shaping method of a femtosecond laser is proposed. Using the time shaping method, we can segment the pulse into subpulses of varying energies and with a defined delay, thereby influencing the interaction between electrons and photons, ultimately enhancing transfection efficiency. The transfection efficiency is further improved by spatially shaping the laser pulse to extend the focusing beam's working distance and reduce the cell's sensitivity to the focal position. Through the characterization of the viability and transfection efficiency of HEK-293T cells, the method achieved efficient and active transfection, with a maximum transfection efficiency of 45.1% and a cell survival rate of 93.6%. This method provides key technical support for femtosecond laser transfection and promotes its further application in clinical practice.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiheng Lim, Shumpei Kojima, Pradipta Mukherjee, Ibrahim Abd El-Sadek, Shuichi Makita, Yoshiaki Yasuno
{"title":"Developmental Imaging of Radish Sprouts Using Dynamic Optical Coherence Tomography.","authors":"Yiheng Lim, Shumpei Kojima, Pradipta Mukherjee, Ibrahim Abd El-Sadek, Shuichi Makita, Yoshiaki Yasuno","doi":"10.1002/jbio.202400254","DOIUrl":"https://doi.org/10.1002/jbio.202400254","url":null,"abstract":"<p><p>The germination process of radish sprouts was investigated in detail using volumetric dynamic optical coherence tomography (OCT). Dynamic OCT involves the sequential acquisition of 16 OCT images and subsequent temporal variance analysis of each pixel, enabling non-invasive visualization of the cellular and tissue activities of plants. The radish sprouts were longitudinally investigated for up to 12 days, and changes in morphology and dynamic OCT image patterns were observed as the plants developed. The dynamic OCT signals in the vessels and growing roots were relatively high in the early stage of germination and decreased as the tissue matured. These results suggest that dynamic OCT is sensitive to water and nutrient transport as well as cellular activities associated with plant growth.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of biophotonicsPub Date : 2024-11-01Epub Date: 2024-09-04DOI: 10.1002/jbio.202300314
L van Haasterecht, L Bartolini, J M I Louter, P J González, F B Niessen, D Iannuzzi, M L Groot, P P M van Zuijlen
{"title":"Suction-Based Optical Coherence Elastography for the Biomechanical Characterization of Pathological Skin Conditions: A Pilot Study.","authors":"L van Haasterecht, L Bartolini, J M I Louter, P J González, F B Niessen, D Iannuzzi, M L Groot, P P M van Zuijlen","doi":"10.1002/jbio.202300314","DOIUrl":"10.1002/jbio.202300314","url":null,"abstract":"<p><p>Accurate characterization of mechanical properties is crucial in the evaluation of therapeutic effects for problematic skin conditions. A pilot study was carried out using a novel optical coherence elastography (OCE) device, combining mechanical characterization through suction-based deformation and imaging through optical coherence tomography. Using AI-assisted image segmentation and a power-law model, we were able to describe the mechanical behavior, comparing with measurements from the most commonly used commercial instrument (Cutometer) and subjective analyses of stiffness using the Patient and Observer Scar Assessment Scale. Twenty subjects were included with either keloids or hypertrophic scars. Measurements were fast and produced no discomfort. Mechanical and structural (epidermal thickness and rugosity) descriptors in pathologic skin conditions differed significantly from those in control tissue. We showed for the first time, the clinical feasibility of this novel suction-based OCE device in evaluating mechanical and structural properties in pathological skin conditions such as scars.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of biophotonicsPub Date : 2024-11-01Epub Date: 2024-10-02DOI: 10.1002/jbio.202400368
Alina A Platonova, Polina V Aleksandrova, Anna I Alekseeva, Sophya P Kudryavtseva, Arsen K Zotov, Kirill I Zaytsev, Kirill B Dolganov, Igor V Reshetov, Vladimir N Kurlov, Irina N Dolganova
{"title":"Feasibility of Monitoring Tissue Properties During Microcirculation Disorder Using a Compact Fiber-Based Probe With Sapphire Tip.","authors":"Alina A Platonova, Polina V Aleksandrova, Anna I Alekseeva, Sophya P Kudryavtseva, Arsen K Zotov, Kirill I Zaytsev, Kirill B Dolganov, Igor V Reshetov, Vladimir N Kurlov, Irina N Dolganova","doi":"10.1002/jbio.202400368","DOIUrl":"10.1002/jbio.202400368","url":null,"abstract":"<p><p>One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatially Resolved Fibre-Optic Probe for Cervical Precancer Detection Using Fluorescence Spectroscopy and PCA-ANN-Based Classification Algorithm: An In Vitro Study.","authors":"Shivam Shukla, Bhaswati Singha Deo, Nemichand, Pankaj Singh, Prabodh Kumar Pandey, Asima Pradhan","doi":"10.1002/jbio.202400284","DOIUrl":"10.1002/jbio.202400284","url":null,"abstract":"<p><p>Cervical cancer can be detected at an early stage through the changes occurring in biochemical and morphological properties of epithelium layer. Fluorescence spectroscopy has the ability to identify these subtle changes non-invasively and in real time with good accuracy in comparison with conventional techniques. In this paper, we report the usage of a custom designed spatially resolved fibre-optic probe (SRFOP), which consists of 77 fibres in two concentric rings, for the detection of cervical cancer using fluorescence spectroscopy technique. The aim of this study is to classify different grades of cervical precancer on the basis of their fluorescence spectra followed by a robust classification algorithm. Fluorescence spectra of 28 cervical tissue samples of different categories have been recorded using six detector fibres of FOP at different spatial locations with the source fibre (SF). A 405 nm laser diode source has been utilised to excite the samples and a USB 4000 Ocean Optics spectrometer to collect the output spectra in the wavelength range 400-700 nm. Principal component analysis (PCA) was applied to the collected spectra to reduce the dimensionality of the data while preserving the most significant features for classification. The first 10 principal components, which captured the majority of the variance in the spectra, were selected as input features for the classification model. Classification was then performed using an artificial neural network (ANN) with a specific architecture, including an input layer, hidden layers, and a softmax activation function in the output layer. Experimental and classification results both demonstrate that proximal fibres (PFs) perform better than distal fibres (DFs) in capturing the discriminatory features present in the epithelium layer of cervical tissue samples as PF collect most of the signal from the epithelium layer. The combined approach of spatially resolved fluorescence spectroscopy and PCA-ANN classification techniques is able to discriminate different grades of cervical precancer and normal with an average sensitivity, specificity and accuracy of 93.33%, 96.67% and 95.57%, respectively.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of biophotonicsPub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.1002/jbio.202400332
Yong Cheng, Shuqing Wang, Fei Chen, Jiahui Liang, Yan Zhang, Lei Zhang, Wangbao Yin, Suotang Jia, Liantuan Xiao
{"title":"A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System for Remote Bacteria Identification.","authors":"Yong Cheng, Shuqing Wang, Fei Chen, Jiahui Liang, Yan Zhang, Lei Zhang, Wangbao Yin, Suotang Jia, Liantuan Xiao","doi":"10.1002/jbio.202400332","DOIUrl":"10.1002/jbio.202400332","url":null,"abstract":"<p><p>Bacteria are the primary cause of infectious diseases, making rapid and accurate identification crucial for timely pathogen diagnosis and disease control. However, traditional identification techniques such as polymerase chain reaction and loop-mediated isothermal amplification are complex, time-consuming, and pose infection risks. This study explores remote (~3 m) bacterial identification using laser-induced breakdown spectroscopy (LIBS) with a Cassegrain reflective telescope. Principal component analysis (PCA) was employed to reduce the dimensionality of the LIBS spectral data, and the accuracy of support vector machine (SVM) and Random Forest (RF) algorithms was compared. Multiple repeated experiments showed that the RF model achieved a classification accuracy, recall, precision, and F1-score of 99.81%, 99.80%, 99.79%, and 0.9979, respectively, outperforming the SVM model and providing more accurate remote bacterial identification. The method based on laser-induced plasma spectroscopy and machine learning has broad application prospects, supporting noncontact disease diagnosis, improving public health, and advancing medical research and technological development.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of biophotonicsPub Date : 2024-11-01Epub Date: 2024-10-09DOI: 10.1002/jbio.202400143
Artemii Korobov, Zlata Besedovskaia, Elizaveta Petrova, Alexey Kurnikov, Anna Glyavina, Anna Orlova, Svetlana Nemirova, Irina Druzhkova, Marina Sirotkina, Evgeny Shirshin, Dmitry Gorin, Lei Xi, Daniel Razansky, Pavel Subochev
{"title":"SKYQUANT 3D: Quantifying Vascular Anatomy With an Open-Source Workflow for Comprehensive Analysis of Volumetric Optoacoustic Angiography Data.","authors":"Artemii Korobov, Zlata Besedovskaia, Elizaveta Petrova, Alexey Kurnikov, Anna Glyavina, Anna Orlova, Svetlana Nemirova, Irina Druzhkova, Marina Sirotkina, Evgeny Shirshin, Dmitry Gorin, Lei Xi, Daniel Razansky, Pavel Subochev","doi":"10.1002/jbio.202400143","DOIUrl":"10.1002/jbio.202400143","url":null,"abstract":"<p><p>Efficient visualization of the vascular system is of key importance in biomedical research into tumor angiogenesis, cerebrovascular alterations, and other angiopathies. Optoacoustic (OA) angiography offers a promising solution combining molecular optical contrast with high resolution and deep penetration of ultrasound. However, its hybrid nature implies complex data collection and processing workflows, with significant variability in methodologies across developers and users. To streamline interoperability, we introduce SKYQUANT 3D, a Python-based set of instructions for the Thermo Fisher Scientific Amira/Avizo 3D Visualization & Analysis Software. Our workflow simplifies the batch processing of volumetric optoacoustic angiography images, extracting meaningful quantitative information while also providing statistical analysis and graphical representation of the results. Quantification performance of SKYQUANT 3D is demonstrated using functional preclinical and clinical in vivo 3D OA angiographic tests involving ambient temperature variations and repositioning of the imaged limb.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Limbus Biomechanical Properties Using Optical Coherence Elastography.","authors":"Yubao Zhang, Yue Wang, Xiao Han, Jiahui Luo, Chuanqi Lin, Qin Zhang, Xingdao He","doi":"10.1002/jbio.202400275","DOIUrl":"10.1002/jbio.202400275","url":null,"abstract":"<p><p>The elasticity of the limbus is crucial for ocular health, yet it remains inadequately explored. This study employs acoustic radiation force optical coherence elastography (ARF-OCE) to evaluate the biomechanical properties of the limbus under varying intraocular pressures. The method was validated using a heterogeneous phantom and subsequently applied to ex vivo porcine limbus samples. Elastic wave velocity at specific locations within the limbus was calculated, and the corresponding Young's modulus values were obtained. Spatial elasticity distribution maps were generated by correlating Young's modulus values with their respective locations in the two-dimensional structural images. The results indicate that ARF-OCE enhances the understanding of limbus biomechanical behavior and holds potential for diagnosing regional variations caused by ocular diseases.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of biophotonicsPub Date : 2024-11-01Epub Date: 2024-09-20DOI: 10.1002/jbio.202400318
Anton A Plekhanov, Nidjat A Guseynov, Elena B Kiseleva, Saddam V Bopkhoev, Arseniy L Potapov, Ashrf B I Ali, Alexander A Moiseev, Valentina M Ryabova, Sergey Y Ivanov, Alexander A Muraev, Natalia D Gladkova, Marina A Sirotkina
{"title":"The Effect of Cryotherapy on Buccal Blood Vessels Evaluated by Optical Coherence Tomography Angiography: A Pilot Study.","authors":"Anton A Plekhanov, Nidjat A Guseynov, Elena B Kiseleva, Saddam V Bopkhoev, Arseniy L Potapov, Ashrf B I Ali, Alexander A Moiseev, Valentina M Ryabova, Sergey Y Ivanov, Alexander A Muraev, Natalia D Gladkova, Marina A Sirotkina","doi":"10.1002/jbio.202400318","DOIUrl":"10.1002/jbio.202400318","url":null,"abstract":"<p><p>While cryotherapy is one of the traditional ways to reduce postoperative complications in maxillofacial surgery, the cooling degree is not regulated in most cases and the achieved effect is not properly controlled. Therefore, to develop optimal cooling modes, we propose to study the buccal vascular response to cooling, which has not been previously shown. To evaluate the effect of cooling, we analyzed vessel networks using optical coherence tomography angiography (OCT-A). The cheek vessels were OCT-A monitored using cooling by an ice bag/cooling mask. We found the advantages of using a cooling mask over an ice bag consist of a statistically significant decrease in the perfused vessel density (PVD) of the papillary layer at the oral mucosa. The absence of the reticular layer vessel reaction to any type of cooling was noted. We argue for the necessity to develop optimal modes of cryotherapy, which will contribute to blood perfusion reduction and reduction of PVD recovery.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of biophotonicsPub Date : 2024-11-01Epub Date: 2024-09-27DOI: 10.1002/jbio.202400172
Ryan Dimmock, Yilong Zhang, Gibran F Butt, Saaeha Rauz, Zhihong Huang, Ying Yang
{"title":"Characterizing Biomechanics of Limbal Niche Using Vibrational Optical Coherence Elastography.","authors":"Ryan Dimmock, Yilong Zhang, Gibran F Butt, Saaeha Rauz, Zhihong Huang, Ying Yang","doi":"10.1002/jbio.202400172","DOIUrl":"10.1002/jbio.202400172","url":null,"abstract":"<p><p>The limbal niche is an adult source of epithelial stem cells which regenerate the cornea epithelium. The architecture and biomechanical properties of the limbus have previously been demonstrated to change due to aging and disease. This study aims to non-destructively and simultaneously quantify these limbal niche properties, along with their age-related changes. A lab-built vibrational optical coherence elastography (OCE) device consisting of a phase-sensitive optical coherence tomography (OCT) with a vibrational stimulator has been used to collect structural images and the depth-resolved elasticity of human corneoscleral tissues (aged 4-96 years old). The limbal palisades of Vogt (POV) were delineated well in OCT images which were validated by histology. The POVs have been spatially mapped with simultaneous elasticity measurements in cross-sections, showing tissue stiffness distributions across the undulations. A significant influence of age on the dimensions of the POVs was explored. The elastic modulus within the limbal niches for the ≥65-year-old group was significantly higher than that of the <65-year-old group.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}