O. V. Angelsky, A. Y. Bekshaev, C. Yu. Zenkova, D. I. Ivanskyi, J. Zheng, Xinzheng Zhang, Yu. Ursuliak
{"title":"Comprehensive Investigation of the Eye-Cornea Structure Based on the Extended Techniques of Polarization-Sensitive Optical Coherence Tomography","authors":"O. V. Angelsky, A. Y. Bekshaev, C. Yu. Zenkova, D. I. Ivanskyi, J. Zheng, Xinzheng Zhang, Yu. Ursuliak","doi":"10.1002/jbio.202500101","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present a universal technique for noninvasive investigation of thin multilayer optically transparent tissues based on polarization-sensitive optical coherence tomography. To reach higher diagnostic accuracy, we revisit the model of the cornea structure and reconsider the physical features of the interaction of light with the tissue structural elements. In the scheme proposed, the probing beam is algorithmically adjustable such that the <i>x</i>-polarized radiation impinges each consecutive structural layer; the object beam is formed by the reflection and back-scattering. Its characteristics are found analytically and numerically within the framework of the polarized Monte-Carlo model and the Jones matrix formalism. A modified Mach–Zehnder interferometer with orthogonal polarization channels enables the elimination of the object-signal depolarization caused by stochastic scattering and facilitates evaluation of the refractive indices and birefringence of tissue elements. The technique permits spatial scanning of the object, providing a complete 3D mapping with a submicrometer resolution in the longitudinal and transverse directions.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a universal technique for noninvasive investigation of thin multilayer optically transparent tissues based on polarization-sensitive optical coherence tomography. To reach higher diagnostic accuracy, we revisit the model of the cornea structure and reconsider the physical features of the interaction of light with the tissue structural elements. In the scheme proposed, the probing beam is algorithmically adjustable such that the x-polarized radiation impinges each consecutive structural layer; the object beam is formed by the reflection and back-scattering. Its characteristics are found analytically and numerically within the framework of the polarized Monte-Carlo model and the Jones matrix formalism. A modified Mach–Zehnder interferometer with orthogonal polarization channels enables the elimination of the object-signal depolarization caused by stochastic scattering and facilitates evaluation of the refractive indices and birefringence of tissue elements. The technique permits spatial scanning of the object, providing a complete 3D mapping with a submicrometer resolution in the longitudinal and transverse directions.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.