Identification of Migraine Subtypes Using Functional Near-Infrared Spectroscopy Data: A Domain-Based Feature Extraction.

Begum Kara Gulay, Nilufer Zengin, Fatih Emre Ozturk, Vesile Ozturk, Cagdas Guducu, Neslihan Demirel
{"title":"Identification of Migraine Subtypes Using Functional Near-Infrared Spectroscopy Data: A Domain-Based Feature Extraction.","authors":"Begum Kara Gulay, Nilufer Zengin, Fatih Emre Ozturk, Vesile Ozturk, Cagdas Guducu, Neslihan Demirel","doi":"10.1002/jbio.202500120","DOIUrl":null,"url":null,"abstract":"<p><p>Migraine diagnosis relies on subjective patient reports and International Headache Society guidelines, leading to misdiagnoses. In clinical practice, objective, reliable diagnostic tools are needed. To address this, the study proposes a framework utilizing functional near-infrared spectroscopy (fNIRS) to distinguish healthy individuals, interictal migraine patients with and without aura. The approach focuses on prefrontal cortex (PFC) activity, extracting features from oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in time, frequency, and time-frequency domains. XGBoost applied to time-frequency features of oxyhemoglobin in the left PFC demonstrated outstanding performance, achieving 92% balanced accuracy, 89% sensitivity, 95% specificity, and 89% F1 score. Non-invasive fNIRS with Machine Learning offers a promising, cost-effective alternative to traditional diagnostic methods, enhancing early and accurate diagnosis, leading to better-targeted treatments and improved outcomes. The study provides a strong foundation for future research and clinical applications in migraine diagnosis.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500120"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Migraine diagnosis relies on subjective patient reports and International Headache Society guidelines, leading to misdiagnoses. In clinical practice, objective, reliable diagnostic tools are needed. To address this, the study proposes a framework utilizing functional near-infrared spectroscopy (fNIRS) to distinguish healthy individuals, interictal migraine patients with and without aura. The approach focuses on prefrontal cortex (PFC) activity, extracting features from oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in time, frequency, and time-frequency domains. XGBoost applied to time-frequency features of oxyhemoglobin in the left PFC demonstrated outstanding performance, achieving 92% balanced accuracy, 89% sensitivity, 95% specificity, and 89% F1 score. Non-invasive fNIRS with Machine Learning offers a promising, cost-effective alternative to traditional diagnostic methods, enhancing early and accurate diagnosis, leading to better-targeted treatments and improved outcomes. The study provides a strong foundation for future research and clinical applications in migraine diagnosis.

使用功能近红外光谱数据识别偏头痛亚型:基于域的特征提取。
偏头痛的诊断依赖于主观的患者报告和国际头痛学会指南,导致误诊。在临床实践中,需要客观、可靠的诊断工具。为了解决这个问题,该研究提出了一个利用功能性近红外光谱(fNIRS)来区分健康个体、有先兆和没有先兆的间歇期偏头痛患者的框架。该方法主要关注前额皮质(PFC)的活动,在时间、频率和时频域提取含氧血红蛋白、脱氧血红蛋白和总血红蛋白的特征。XGBoost应用于左PFC氧合血红蛋白的时频特征表现出出色的性能,达到92%的平衡精度,89%的灵敏度,95%的特异性和89%的F1评分。与机器学习相结合的非侵入性fNIRS为传统诊断方法提供了一种有前途的、具有成本效益的替代方法,增强了早期和准确的诊断,从而实现了更有针对性的治疗和改善的结果。本研究为今后偏头痛诊断的研究和临床应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信