Begum Kara Gulay, Nilufer Zengin, Fatih Emre Ozturk, Vesile Ozturk, Cagdas Guducu, Neslihan Demirel
{"title":"Identification of Migraine Subtypes Using Functional Near-Infrared Spectroscopy Data: A Domain-Based Feature Extraction","authors":"Begum Kara Gulay, Nilufer Zengin, Fatih Emre Ozturk, Vesile Ozturk, Cagdas Guducu, Neslihan Demirel","doi":"10.1002/jbio.202500120","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Migraine diagnosis relies on subjective patient reports and International Headache Society guidelines, leading to misdiagnoses. In clinical practice, objective, reliable diagnostic tools are needed. To address this, the study proposes a framework utilizing functional near-infrared spectroscopy (fNIRS) to distinguish healthy individuals, interictal migraine patients with and without aura. The approach focuses on prefrontal cortex (PFC) activity, extracting features from oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in time, frequency, and time-frequency domains. XGBoost applied to time-frequency features of oxyhemoglobin in the left PFC demonstrated outstanding performance, achieving 92% balanced accuracy, 89% sensitivity, 95% specificity, and 89% F1 score. Non-invasive fNIRS with Machine Learning offers a promising, cost-effective alternative to traditional diagnostic methods, enhancing early and accurate diagnosis, leading to better-targeted treatments and improved outcomes. The study provides a strong foundation for future research and clinical applications in migraine diagnosis.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500120","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Migraine diagnosis relies on subjective patient reports and International Headache Society guidelines, leading to misdiagnoses. In clinical practice, objective, reliable diagnostic tools are needed. To address this, the study proposes a framework utilizing functional near-infrared spectroscopy (fNIRS) to distinguish healthy individuals, interictal migraine patients with and without aura. The approach focuses on prefrontal cortex (PFC) activity, extracting features from oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in time, frequency, and time-frequency domains. XGBoost applied to time-frequency features of oxyhemoglobin in the left PFC demonstrated outstanding performance, achieving 92% balanced accuracy, 89% sensitivity, 95% specificity, and 89% F1 score. Non-invasive fNIRS with Machine Learning offers a promising, cost-effective alternative to traditional diagnostic methods, enhancing early and accurate diagnosis, leading to better-targeted treatments and improved outcomes. The study provides a strong foundation for future research and clinical applications in migraine diagnosis.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.