Hyperspectral Imaging for Benign and Malignant Diagnosis of Breast Tumors.

Yihui He, Yihan Zhao, Jia Xu, Dongsheng Zhou, Weichen Shi, Yulong Wang, Yunchao Wang, Xulei Wang, Mengqiu Zhang, Ning Kang, Jianning Wang
{"title":"Hyperspectral Imaging for Benign and Malignant Diagnosis of Breast Tumors.","authors":"Yihui He, Yihan Zhao, Jia Xu, Dongsheng Zhou, Weichen Shi, Yulong Wang, Yunchao Wang, Xulei Wang, Mengqiu Zhang, Ning Kang, Jianning Wang","doi":"10.1002/jbio.202500188","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the feasibility of combining microscopic hyperspectral imaging (370-1100 nm) with a lightweight 1D-CNN for rapid, label-free discrimination of benign and malignant breast tumors.</p><p><strong>Methods: </strong>Breast specimens (43 malignant, 39 benign) were imaged; 2 050 000 pixel spectra were preprocessed (dark-current subtraction, white-reference calibration, Savitzky-Golay smoothing, z-score normalization) and input to a custom 1D-CNN. Performance was benchmarked against SVM, AlexNet, and LSTM using accuracy, sensitivity, specificity.</p><p><strong>Results: </strong>The 1D-CNN achieved 90.43% accuracy, 89.10% sensitivity, 91.34% specificity, exceeding baseline models.</p><p><strong>Conclusions: </strong>Combining HSI with 1D CNN enables rapid and highly accurate classification of breast tumors, providing a new approach to rapid pathological diagnosis.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500188"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To assess the feasibility of combining microscopic hyperspectral imaging (370-1100 nm) with a lightweight 1D-CNN for rapid, label-free discrimination of benign and malignant breast tumors.

Methods: Breast specimens (43 malignant, 39 benign) were imaged; 2 050 000 pixel spectra were preprocessed (dark-current subtraction, white-reference calibration, Savitzky-Golay smoothing, z-score normalization) and input to a custom 1D-CNN. Performance was benchmarked against SVM, AlexNet, and LSTM using accuracy, sensitivity, specificity.

Results: The 1D-CNN achieved 90.43% accuracy, 89.10% sensitivity, 91.34% specificity, exceeding baseline models.

Conclusions: Combining HSI with 1D CNN enables rapid and highly accurate classification of breast tumors, providing a new approach to rapid pathological diagnosis.

高光谱成像在乳腺肿瘤良恶性诊断中的应用。
目的:探讨显微高光谱成像(370 ~ 1100nm)与轻型1D-CNN相结合快速、无标记区分乳腺良恶性肿瘤的可行性。方法:对乳腺标本(恶性43例,良性39例)进行影像学检查;对205万像素光谱进行预处理(暗电流减去、白基准校准、Savitzky-Golay平滑、z-score归一化),并输入到自定义1D-CNN中。使用准确性,灵敏度,特异性对SVM, AlexNet和LSTM进行性能基准测试。结果:1D-CNN准确率为90.43%,灵敏度为89.10%,特异性为91.34%,优于基线模型。结论:HSI联合1D CNN对乳腺肿瘤进行快速、高精度的分类,为快速病理诊断提供了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信