高光谱成像在乳腺肿瘤良恶性诊断中的应用。

IF 2.3
Yihui He, Yihan Zhao, Jia Xu, Dongsheng Zhou, Weichen Shi, Yulong Wang, Yunchao Wang, Xulei Wang, Mengqiu Zhang, Ning Kang, Jianning Wang
{"title":"高光谱成像在乳腺肿瘤良恶性诊断中的应用。","authors":"Yihui He, Yihan Zhao, Jia Xu, Dongsheng Zhou, Weichen Shi, Yulong Wang, Yunchao Wang, Xulei Wang, Mengqiu Zhang, Ning Kang, Jianning Wang","doi":"10.1002/jbio.202500188","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the feasibility of combining microscopic hyperspectral imaging (370-1100 nm) with a lightweight 1D-CNN for rapid, label-free discrimination of benign and malignant breast tumors.</p><p><strong>Methods: </strong>Breast specimens (43 malignant, 39 benign) were imaged; 2 050 000 pixel spectra were preprocessed (dark-current subtraction, white-reference calibration, Savitzky-Golay smoothing, z-score normalization) and input to a custom 1D-CNN. Performance was benchmarked against SVM, AlexNet, and LSTM using accuracy, sensitivity, specificity.</p><p><strong>Results: </strong>The 1D-CNN achieved 90.43% accuracy, 89.10% sensitivity, 91.34% specificity, exceeding baseline models.</p><p><strong>Conclusions: </strong>Combining HSI with 1D CNN enables rapid and highly accurate classification of breast tumors, providing a new approach to rapid pathological diagnosis.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500188"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Imaging for Benign and Malignant Diagnosis of Breast Tumors.\",\"authors\":\"Yihui He, Yihan Zhao, Jia Xu, Dongsheng Zhou, Weichen Shi, Yulong Wang, Yunchao Wang, Xulei Wang, Mengqiu Zhang, Ning Kang, Jianning Wang\",\"doi\":\"10.1002/jbio.202500188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To assess the feasibility of combining microscopic hyperspectral imaging (370-1100 nm) with a lightweight 1D-CNN for rapid, label-free discrimination of benign and malignant breast tumors.</p><p><strong>Methods: </strong>Breast specimens (43 malignant, 39 benign) were imaged; 2 050 000 pixel spectra were preprocessed (dark-current subtraction, white-reference calibration, Savitzky-Golay smoothing, z-score normalization) and input to a custom 1D-CNN. Performance was benchmarked against SVM, AlexNet, and LSTM using accuracy, sensitivity, specificity.</p><p><strong>Results: </strong>The 1D-CNN achieved 90.43% accuracy, 89.10% sensitivity, 91.34% specificity, exceeding baseline models.</p><p><strong>Conclusions: </strong>Combining HSI with 1D CNN enables rapid and highly accurate classification of breast tumors, providing a new approach to rapid pathological diagnosis.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500188\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:探讨显微高光谱成像(370 ~ 1100nm)与轻型1D-CNN相结合快速、无标记区分乳腺良恶性肿瘤的可行性。方法:对乳腺标本(恶性43例,良性39例)进行影像学检查;对205万像素光谱进行预处理(暗电流减去、白基准校准、Savitzky-Golay平滑、z-score归一化),并输入到自定义1D-CNN中。使用准确性,灵敏度,特异性对SVM, AlexNet和LSTM进行性能基准测试。结果:1D-CNN准确率为90.43%,灵敏度为89.10%,特异性为91.34%,优于基线模型。结论:HSI联合1D CNN对乳腺肿瘤进行快速、高精度的分类,为快速病理诊断提供了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Imaging for Benign and Malignant Diagnosis of Breast Tumors.

Objective: To assess the feasibility of combining microscopic hyperspectral imaging (370-1100 nm) with a lightweight 1D-CNN for rapid, label-free discrimination of benign and malignant breast tumors.

Methods: Breast specimens (43 malignant, 39 benign) were imaged; 2 050 000 pixel spectra were preprocessed (dark-current subtraction, white-reference calibration, Savitzky-Golay smoothing, z-score normalization) and input to a custom 1D-CNN. Performance was benchmarked against SVM, AlexNet, and LSTM using accuracy, sensitivity, specificity.

Results: The 1D-CNN achieved 90.43% accuracy, 89.10% sensitivity, 91.34% specificity, exceeding baseline models.

Conclusions: Combining HSI with 1D CNN enables rapid and highly accurate classification of breast tumors, providing a new approach to rapid pathological diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信