{"title":"DeepLabV3+ With Convolutional Triplet Attention and Histopathology-Guided Voting for Hyperspectral Image Segmentation of Serous Ovarian Cancer.","authors":"Wenrui Tang, Lijun Wei, Zhenfeng Mo, Jiahao Wang, Xuan Zhang, Siqi Zhu, Lvfen Gao","doi":"10.1002/jbio.202500142","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has been extensively applied in medical image analysis, providing healthcare professionals with more efficient and accurate diagnostic information. Among these advanced semantic segmentation models, the baseline DeepLabV3+ model is more adept at processing low-dimensional data such as RGB images, but its performance on high-dimensional data like hyperspectral images is suboptimal, limiting its generalization and discriminative capabilities. We propose a highly innovative hybrid architecture integrating a Convolutional Triplet Attention Module (CTAM) to capture cross-dimensional spectral-spatial dependencies and a Histopathology-Guided Voting Mechanism (HVM) to incorporate WHO diagnostic criteria. The results demonstrate that our model can accurately differentiate and localize low-grade and high-grade serous ovarian cancer tissues, with an accuracy of 92.7% and 90.2%, respectively. Furthermore, our performance exceeds the pathologist's consensus (85.4%) and surpasses state-of-the-art models (e.g., U-Net, PAN, FPN) by a significant margin of over 20% in LGSC classification, rigorously validating its scientific superiority.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500142"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has been extensively applied in medical image analysis, providing healthcare professionals with more efficient and accurate diagnostic information. Among these advanced semantic segmentation models, the baseline DeepLabV3+ model is more adept at processing low-dimensional data such as RGB images, but its performance on high-dimensional data like hyperspectral images is suboptimal, limiting its generalization and discriminative capabilities. We propose a highly innovative hybrid architecture integrating a Convolutional Triplet Attention Module (CTAM) to capture cross-dimensional spectral-spatial dependencies and a Histopathology-Guided Voting Mechanism (HVM) to incorporate WHO diagnostic criteria. The results demonstrate that our model can accurately differentiate and localize low-grade and high-grade serous ovarian cancer tissues, with an accuracy of 92.7% and 90.2%, respectively. Furthermore, our performance exceeds the pathologist's consensus (85.4%) and surpasses state-of-the-art models (e.g., U-Net, PAN, FPN) by a significant margin of over 20% in LGSC classification, rigorously validating its scientific superiority.