DeepLabV3+ With Convolutional Triplet Attention and Histopathology-Guided Voting for Hyperspectral Image Segmentation of Serous Ovarian Cancer.

Wenrui Tang, Lijun Wei, Zhenfeng Mo, Jiahao Wang, Xuan Zhang, Siqi Zhu, Lvfen Gao
{"title":"DeepLabV3+ With Convolutional Triplet Attention and Histopathology-Guided Voting for Hyperspectral Image Segmentation of Serous Ovarian Cancer.","authors":"Wenrui Tang, Lijun Wei, Zhenfeng Mo, Jiahao Wang, Xuan Zhang, Siqi Zhu, Lvfen Gao","doi":"10.1002/jbio.202500142","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has been extensively applied in medical image analysis, providing healthcare professionals with more efficient and accurate diagnostic information. Among these advanced semantic segmentation models, the baseline DeepLabV3+ model is more adept at processing low-dimensional data such as RGB images, but its performance on high-dimensional data like hyperspectral images is suboptimal, limiting its generalization and discriminative capabilities. We propose a highly innovative hybrid architecture integrating a Convolutional Triplet Attention Module (CTAM) to capture cross-dimensional spectral-spatial dependencies and a Histopathology-Guided Voting Mechanism (HVM) to incorporate WHO diagnostic criteria. The results demonstrate that our model can accurately differentiate and localize low-grade and high-grade serous ovarian cancer tissues, with an accuracy of 92.7% and 90.2%, respectively. Furthermore, our performance exceeds the pathologist's consensus (85.4%) and surpasses state-of-the-art models (e.g., U-Net, PAN, FPN) by a significant margin of over 20% in LGSC classification, rigorously validating its scientific superiority.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500142"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has been extensively applied in medical image analysis, providing healthcare professionals with more efficient and accurate diagnostic information. Among these advanced semantic segmentation models, the baseline DeepLabV3+ model is more adept at processing low-dimensional data such as RGB images, but its performance on high-dimensional data like hyperspectral images is suboptimal, limiting its generalization and discriminative capabilities. We propose a highly innovative hybrid architecture integrating a Convolutional Triplet Attention Module (CTAM) to capture cross-dimensional spectral-spatial dependencies and a Histopathology-Guided Voting Mechanism (HVM) to incorporate WHO diagnostic criteria. The results demonstrate that our model can accurately differentiate and localize low-grade and high-grade serous ovarian cancer tissues, with an accuracy of 92.7% and 90.2%, respectively. Furthermore, our performance exceeds the pathologist's consensus (85.4%) and surpasses state-of-the-art models (e.g., U-Net, PAN, FPN) by a significant margin of over 20% in LGSC classification, rigorously validating its scientific superiority.

基于卷积三重关注和组织病理学引导投票的DeepLabV3+用于浆液性卵巢癌高光谱图像分割。
深度学习已广泛应用于医学图像分析,为医疗专业人员提供更高效、准确的诊断信息。在这些高级语义分割模型中,基线DeepLabV3+模型更擅长处理RGB图像等低维数据,但在高光谱图像等高维数据上的性能不佳,限制了其泛化和判别能力。我们提出了一种高度创新的混合架构,集成了卷积三重关注模块(CTAM)来捕获跨维光谱空间依赖关系,以及组织病理学引导投票机制(HVM)来纳入世卫组织诊断标准。结果表明,该模型能够准确地区分和定位低级别和高级别浆液性卵巢癌组织,准确率分别为92.7%和90.2%。此外,我们的表现超过了病理学家的共识(85.4%),并且在LGSC分类中超过了最先进的模型(例如,U-Net, PAN, FPN)超过20%,严格验证了其科学优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信