{"title":"未染血涂片分析:基于规则、机器学习和深度学习技术综述。","authors":"Husnu Baris Baydargil, Thomas Bocklitz","doi":"10.1002/jbio.202500121","DOIUrl":null,"url":null,"abstract":"<p>Blood cells are central to oxygen transport, immune defense, and hemostasis. Their number and morphology act as sensitive biomarkers, making accurate segmentation and classification essential for hematological diagnostics. Biophotonic techniques now provide label-free imaging of unstained smears by exploiting intrinsic phase and scattering contrast, yet such images exhibit low optical signal and subtle morphological variation that exacerbate segmentation errors. Label-free modalities nevertheless preserve contrast where dyes fail, motivating renewed interest in unstained workflows. This review analyzes rule-based, machine-learning, and deep-learning approaches for segmenting and classifying label-free blood cells, highlighting performance gains, persistent challenges, and future directions for clinical adoption.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202500121","citationCount":"0","resultStr":"{\"title\":\"Unstained Blood Smear Analysis: A Review of Rule-Based, Machine Learning, and Deep Learning Techniques\",\"authors\":\"Husnu Baris Baydargil, Thomas Bocklitz\",\"doi\":\"10.1002/jbio.202500121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Blood cells are central to oxygen transport, immune defense, and hemostasis. Their number and morphology act as sensitive biomarkers, making accurate segmentation and classification essential for hematological diagnostics. Biophotonic techniques now provide label-free imaging of unstained smears by exploiting intrinsic phase and scattering contrast, yet such images exhibit low optical signal and subtle morphological variation that exacerbate segmentation errors. Label-free modalities nevertheless preserve contrast where dyes fail, motivating renewed interest in unstained workflows. This review analyzes rule-based, machine-learning, and deep-learning approaches for segmenting and classifying label-free blood cells, highlighting performance gains, persistent challenges, and future directions for clinical adoption.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202500121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500121\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500121","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Unstained Blood Smear Analysis: A Review of Rule-Based, Machine Learning, and Deep Learning Techniques
Blood cells are central to oxygen transport, immune defense, and hemostasis. Their number and morphology act as sensitive biomarkers, making accurate segmentation and classification essential for hematological diagnostics. Biophotonic techniques now provide label-free imaging of unstained smears by exploiting intrinsic phase and scattering contrast, yet such images exhibit low optical signal and subtle morphological variation that exacerbate segmentation errors. Label-free modalities nevertheless preserve contrast where dyes fail, motivating renewed interest in unstained workflows. This review analyzes rule-based, machine-learning, and deep-learning approaches for segmenting and classifying label-free blood cells, highlighting performance gains, persistent challenges, and future directions for clinical adoption.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.