Unstained Blood Smear Analysis: A Review of Rule-Based, Machine Learning, and Deep Learning Techniques.

Husnu Baris Baydargil, Thomas Bocklitz
{"title":"Unstained Blood Smear Analysis: A Review of Rule-Based, Machine Learning, and Deep Learning Techniques.","authors":"Husnu Baris Baydargil, Thomas Bocklitz","doi":"10.1002/jbio.202500121","DOIUrl":null,"url":null,"abstract":"<p><p>Blood cells are central to oxygen transport, immune defense, and hemostasis. Their number and morphology act as sensitive biomarkers, making accurate segmentation and classification essential for hematological diagnostics. Biophotonic techniques now provide label-free imaging of unstained smears by exploiting intrinsic phase and scattering contrast, yet such images exhibit low optical signal and subtle morphological variation that exacerbate segmentation errors. Label-free modalities nevertheless preserve contrast where dyes fail, motivating renewed interest in unstained workflows. This review analyzes rule-based, machine-learning, and deep-learning approaches for segmenting and classifying label-free blood cells, highlighting performance gains, persistent challenges, and future directions for clinical adoption.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500121"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blood cells are central to oxygen transport, immune defense, and hemostasis. Their number and morphology act as sensitive biomarkers, making accurate segmentation and classification essential for hematological diagnostics. Biophotonic techniques now provide label-free imaging of unstained smears by exploiting intrinsic phase and scattering contrast, yet such images exhibit low optical signal and subtle morphological variation that exacerbate segmentation errors. Label-free modalities nevertheless preserve contrast where dyes fail, motivating renewed interest in unstained workflows. This review analyzes rule-based, machine-learning, and deep-learning approaches for segmenting and classifying label-free blood cells, highlighting performance gains, persistent challenges, and future directions for clinical adoption.

未染血涂片分析:基于规则、机器学习和深度学习技术综述。
血细胞是氧运输、免疫防御和止血的中心。它们的数量和形态作为敏感的生物标志物,使准确的分割和分类对血液学诊断至关重要。生物光子技术现在通过利用本征相位和散射对比度提供未染色涂片的无标记成像,然而这种图像表现出低光信号和微妙的形态变化,从而加剧了分割错误。然而,无标签模式保留了染料失效的对比度,激发了对无染色工作流程的新兴趣。本文分析了基于规则、机器学习和深度学习的无标签血细胞分割和分类方法,强调了性能的提高、持续的挑战和临床应用的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信