{"title":"基于高光谱反射数据的类风湿性关节炎和膝关节滑膜炎的自动分类。","authors":"Shuwang Sun, Zhengyu Wang, Minmin Yu, Yihan Zhao, Yihui He, Lining Zhao","doi":"10.1002/jbio.202500197","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate differentiation between rheumatoid arthritis (RA) and knee synovitis (KS) is essential for guiding optimal treatment, yet conventional histopathology often relies on subjective interpretation and offers limited insight into tissue biochemistry. Here, we introduce TransCNN, a novel multimodal framework that integrates hyperspectral imaging (HSI) with deep learning to achieve objective, high-precision diagnosis. Reflectance-mode HSI across the 400–1000 nm spectrum was performed on 95 synovial tissue specimens. Spectral data were denoised using Savitzky–Golay filtering and distilled via principal component analysis to enhance feature separability. TransCNN employs convolutional neural networks to capture intricate spatial morphology and Transformer layers to model global spectral correlations, producing a unified spectral-spatial representation. On an independent validation set, TransCNN achieved 91% accuracy, 89% F1-score, 90% recall, and 89% precision, substantially surpassing traditional approaches. These findings demonstrate that TransCNN provides a noninvasive, highly sensitive tool for pathological diagnosis, facilitating more reliable, data-driven decision-making in rheumatologic practice.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Classification of Rheumatoid Arthritis and Knee Synovitis From Hyperspectral Reflectance Data\",\"authors\":\"Shuwang Sun, Zhengyu Wang, Minmin Yu, Yihan Zhao, Yihui He, Lining Zhao\",\"doi\":\"10.1002/jbio.202500197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Accurate differentiation between rheumatoid arthritis (RA) and knee synovitis (KS) is essential for guiding optimal treatment, yet conventional histopathology often relies on subjective interpretation and offers limited insight into tissue biochemistry. Here, we introduce TransCNN, a novel multimodal framework that integrates hyperspectral imaging (HSI) with deep learning to achieve objective, high-precision diagnosis. Reflectance-mode HSI across the 400–1000 nm spectrum was performed on 95 synovial tissue specimens. Spectral data were denoised using Savitzky–Golay filtering and distilled via principal component analysis to enhance feature separability. TransCNN employs convolutional neural networks to capture intricate spatial morphology and Transformer layers to model global spectral correlations, producing a unified spectral-spatial representation. On an independent validation set, TransCNN achieved 91% accuracy, 89% F1-score, 90% recall, and 89% precision, substantially surpassing traditional approaches. These findings demonstrate that TransCNN provides a noninvasive, highly sensitive tool for pathological diagnosis, facilitating more reliable, data-driven decision-making in rheumatologic practice.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500197\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202500197","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Automated Classification of Rheumatoid Arthritis and Knee Synovitis From Hyperspectral Reflectance Data
Accurate differentiation between rheumatoid arthritis (RA) and knee synovitis (KS) is essential for guiding optimal treatment, yet conventional histopathology often relies on subjective interpretation and offers limited insight into tissue biochemistry. Here, we introduce TransCNN, a novel multimodal framework that integrates hyperspectral imaging (HSI) with deep learning to achieve objective, high-precision diagnosis. Reflectance-mode HSI across the 400–1000 nm spectrum was performed on 95 synovial tissue specimens. Spectral data were denoised using Savitzky–Golay filtering and distilled via principal component analysis to enhance feature separability. TransCNN employs convolutional neural networks to capture intricate spatial morphology and Transformer layers to model global spectral correlations, producing a unified spectral-spatial representation. On an independent validation set, TransCNN achieved 91% accuracy, 89% F1-score, 90% recall, and 89% precision, substantially surpassing traditional approaches. These findings demonstrate that TransCNN provides a noninvasive, highly sensitive tool for pathological diagnosis, facilitating more reliable, data-driven decision-making in rheumatologic practice.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.