基于高光谱反射数据的类风湿性关节炎和膝关节滑膜炎的自动分类。

Shuwang Sun, Zhengyu Wang, Minmin Yu, Yihan Zhao, Yihui He, Lining Zhao
{"title":"基于高光谱反射数据的类风湿性关节炎和膝关节滑膜炎的自动分类。","authors":"Shuwang Sun, Zhengyu Wang, Minmin Yu, Yihan Zhao, Yihui He, Lining Zhao","doi":"10.1002/jbio.202500197","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate differentiation between rheumatoid arthritis (RA) and knee synovitis (KS) is essential for guiding optimal treatment, yet conventional histopathology often relies on subjective interpretation and offers limited insight into tissue biochemistry. Here, we introduce TransCNN, a novel multimodal framework that integrates hyperspectral imaging (HSI) with deep learning to achieve objective, high-precision diagnosis. Reflectance-mode HSI across the 400-1000 nm spectrum was performed on 95 synovial tissue specimens. Spectral data were denoised using Savitzky-Golay filtering and distilled via principal component analysis to enhance feature separability. TransCNN employs convolutional neural networks to capture intricate spatial morphology and Transformer layers to model global spectral correlations, producing a unified spectral-spatial representation. On an independent validation set, TransCNN achieved 91% accuracy, 89% F1-score, 90% recall, and 89% precision, substantially surpassing traditional approaches. These findings demonstrate that TransCNN provides a noninvasive, highly sensitive tool for pathological diagnosis, facilitating more reliable, data-driven decision-making in rheumatologic practice.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70081"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Classification of Rheumatoid Arthritis and Knee Synovitis From Hyperspectral Reflectance Data.\",\"authors\":\"Shuwang Sun, Zhengyu Wang, Minmin Yu, Yihan Zhao, Yihui He, Lining Zhao\",\"doi\":\"10.1002/jbio.202500197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate differentiation between rheumatoid arthritis (RA) and knee synovitis (KS) is essential for guiding optimal treatment, yet conventional histopathology often relies on subjective interpretation and offers limited insight into tissue biochemistry. Here, we introduce TransCNN, a novel multimodal framework that integrates hyperspectral imaging (HSI) with deep learning to achieve objective, high-precision diagnosis. Reflectance-mode HSI across the 400-1000 nm spectrum was performed on 95 synovial tissue specimens. Spectral data were denoised using Savitzky-Golay filtering and distilled via principal component analysis to enhance feature separability. TransCNN employs convolutional neural networks to capture intricate spatial morphology and Transformer layers to model global spectral correlations, producing a unified spectral-spatial representation. On an independent validation set, TransCNN achieved 91% accuracy, 89% F1-score, 90% recall, and 89% precision, substantially surpassing traditional approaches. These findings demonstrate that TransCNN provides a noninvasive, highly sensitive tool for pathological diagnosis, facilitating more reliable, data-driven decision-making in rheumatologic practice.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e70081\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确区分类风湿关节炎(RA)和膝关节滑膜炎(KS)对于指导最佳治疗至关重要,然而传统的组织病理学往往依赖于主观解释,并且对组织生物化学的了解有限。在这里,我们介绍了TransCNN,这是一种新的多模态框架,将高光谱成像(HSI)与深度学习相结合,以实现客观、高精度的诊断。在400-1000 nm光谱范围内对95个滑膜组织标本进行了反射模式HSI。光谱数据采用Savitzky-Golay滤波去噪,主成分分析提取,增强特征可分性。TransCNN采用卷积神经网络捕获复杂的空间形态和Transformer层来模拟全局光谱相关性,从而产生统一的光谱空间表示。在一个独立的验证集上,TransCNN达到了91%的准确率、89%的f1分数、90%的召回率和89%的精度,大大超过了传统方法。这些发现表明,TransCNN为病理诊断提供了一种无创、高灵敏度的工具,促进了风湿病实践中更可靠、数据驱动的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Classification of Rheumatoid Arthritis and Knee Synovitis From Hyperspectral Reflectance Data.

Accurate differentiation between rheumatoid arthritis (RA) and knee synovitis (KS) is essential for guiding optimal treatment, yet conventional histopathology often relies on subjective interpretation and offers limited insight into tissue biochemistry. Here, we introduce TransCNN, a novel multimodal framework that integrates hyperspectral imaging (HSI) with deep learning to achieve objective, high-precision diagnosis. Reflectance-mode HSI across the 400-1000 nm spectrum was performed on 95 synovial tissue specimens. Spectral data were denoised using Savitzky-Golay filtering and distilled via principal component analysis to enhance feature separability. TransCNN employs convolutional neural networks to capture intricate spatial morphology and Transformer layers to model global spectral correlations, producing a unified spectral-spatial representation. On an independent validation set, TransCNN achieved 91% accuracy, 89% F1-score, 90% recall, and 89% precision, substantially surpassing traditional approaches. These findings demonstrate that TransCNN provides a noninvasive, highly sensitive tool for pathological diagnosis, facilitating more reliable, data-driven decision-making in rheumatologic practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信