Journal of Functional Analysis最新文献

筛选
英文 中文
Global wellposedness of general nonlinear evolution equations for distributions on the Fourier half space 傅里叶半空间上分布的一般非线性演化方程的全局适定性
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-15 DOI: 10.1016/j.jfa.2025.111004
Kenji Nakanishi , Baoxiang Wang
{"title":"Global wellposedness of general nonlinear evolution equations for distributions on the Fourier half space","authors":"Kenji Nakanishi ,&nbsp;Baoxiang Wang","doi":"10.1016/j.jfa.2025.111004","DOIUrl":"10.1016/j.jfa.2025.111004","url":null,"abstract":"<div><div>The Cauchy problem is studied for very general systems of evolution equations, where the time derivative of solution is written by Fourier multipliers in space and analytic nonlinearity, with no other structural requirement. We construct a function space for the Fourier transform embedded in the space of distributions, and establish the global wellposedness with no size restriction. The major restriction on the initial data is that the Fourier transform is supported on the half space, decaying at the boundary in the sense of measure. We also require uniform integrability for the orthogonal directions in the distribution sense, but no other condition. In particular, the initial data may be much more rough than the tempered distributions, and may grow polynomially at the spatial infinity. A simpler argument is also presented for the solutions locally integrable in the frequency. When the Fourier support is slightly more restricted to a conical region, the generality of equations is extremely wide, including those that are even locally illposed in the standard function spaces, such as the backward heat equations, as well as those with infinite derivatives and beyond the natural boundary of the analytic nonlinearity. As more classical examples, our results may be applied to the incompressible and compressible Navier-Stokes and Euler equations, the nonlinear diffusion and wave equations, and so on. In particular, the wellposedness includes uniqueness of very weak solution for those equations, under the Fourier support condition, but with no restriction on regularity or size of solutions. The major drawback of the Fourier support restriction is that the solutions cannot be real valued.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111004"},"PeriodicalIF":1.7,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degenerate Poincaré-Sobolev inequalities via fractional integration 通过分数积分退化poincar<s:1> sobolev不等式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-14 DOI: 10.1016/j.jfa.2025.111000
Alejandro Claros
{"title":"Degenerate Poincaré-Sobolev inequalities via fractional integration","authors":"Alejandro Claros","doi":"10.1016/j.jfa.2025.111000","DOIUrl":"10.1016/j.jfa.2025.111000","url":null,"abstract":"<div><div>We present a local weighted estimate for the Riesz potential in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, which improves the main theorem of Alberico et al. (2009) <span><span>[2]</span></span> in several ways. As a consequence, we derive weighted Poincaré-Sobolev inequalities with sharp dependence on the constants. We answer positively to a conjecture proposed by Pérez and Rela (2019) <span><span>[36]</span></span> related to the sharp exponent in the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> constant in the <span><math><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><mi>p</mi><mo>)</mo></math></span> Poincaré-Sobolev inequality with <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> weights. Our approach is versatile enough to prove Poincaré-Sobolev inequalities for high-order derivatives and fractional Poincaré-Sobolev inequalities with the BBM extra gain factor <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup></math></span>. In particular, we improve one of the main results from Hurri-Syrjänen et al. (2023) <span><span>[24]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111000"},"PeriodicalIF":1.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sharp higher order Sobolev inequality on Riemannian manifolds 黎曼流形上一个尖锐的高阶Sobolev不等式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-14 DOI: 10.1016/j.jfa.2025.111001
Samuel Zeitler
{"title":"A sharp higher order Sobolev inequality on Riemannian manifolds","authors":"Samuel Zeitler","doi":"10.1016/j.jfa.2025.111001","DOIUrl":"10.1016/j.jfa.2025.111001","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be integers such that &lt;span&gt;&lt;math&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and let &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be a closed &lt;em&gt;n&lt;/em&gt;-dimensional Riemannian manifold. We prove there exists some &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; depending only on &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;em&gt;m&lt;/em&gt;, and &lt;em&gt;n&lt;/em&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;,&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;#&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;#&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the square of the best constant for the embedding &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;#&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the Sobolev space consisting of functions on &lt;em&gt;M&lt;/em&gt; with &lt;em&gt;m&lt;/em&gt; weak derivatives in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; if &lt;em&gt;m&lt;/em&gt; is odd. This","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111001"},"PeriodicalIF":1.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143864177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the uncertainty principle for metaplectic transformations 关于形而上学变换的不确定性原理
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-14 DOI: 10.1016/j.jfa.2025.110997
Nicolas Lerner
{"title":"On the uncertainty principle for metaplectic transformations","authors":"Nicolas Lerner","doi":"10.1016/j.jfa.2025.110997","DOIUrl":"10.1016/j.jfa.2025.110997","url":null,"abstract":"<div><div>This paper deals with a version of the Uncertainty Principle applied to operators in the Metaplectic group, the two-fold cover of the symplectic group. We calculate explicitly the sharp lowerbound occurring in our formulation: we provide a sharp lowerbound for the product of variances of <em>Mu</em> and of <em>u</em> for a function <em>u</em> normalized in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <em>M</em> a metaplectic transformation. The proofs are based upon the symplectic covariance of the Weyl calculus as well as upon some structural facts about the generators of the metaplectic group. We found some motivations in the new proofs and extensions of the Heisenberg Uncertainty Principle introduced by A. Widgerson &amp; Y. Widgerson in <span><span>[28]</span></span>, developed in <span><span>[7]</span></span> by N.C. Dias, F. Luef and J.N. Prata and also in <span><span>[24]</span></span>, <span><span>[25]</span></span> by Y. Tang.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110997"},"PeriodicalIF":1.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Harnack type inequality for singular Liouville type equations 奇异Liouville型方程的一个Harnack型不等式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-14 DOI: 10.1016/j.jfa.2025.111003
Paolo Cosentino
{"title":"A Harnack type inequality for singular Liouville type equations","authors":"Paolo Cosentino","doi":"10.1016/j.jfa.2025.111003","DOIUrl":"10.1016/j.jfa.2025.111003","url":null,"abstract":"<div><div>We obtain a Harnack type inequality for solutions of the Liouville type equation,<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mi>α</mi></mrow></msup><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></math></span></span></span> where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <em>K</em> satisfies,<span><span><span><math><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>≤</mo><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>b</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo><mo>.</mo></math></span></span></span> This is a generalization to the singular case of a result by Chen and Lin (1998) <span><span>[12]</span></span>, which considered the regular case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>.</div><div>Part of the argument of Chen-Lin can be adapted to the singular case by means of an isoperimetric inequality for surfaces with conical singularities. However, the case <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> turns out to be more delicate, due to the lack of translation invariance of the singular problem, which requires a different approach.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111003"},"PeriodicalIF":1.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low energy levels of harmonic spheres in analytic manifolds 解析流形中调和球的低能级
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-14 DOI: 10.1016/j.jfa.2025.111006
Melanie Rupflin
{"title":"Low energy levels of harmonic spheres in analytic manifolds","authors":"Melanie Rupflin","doi":"10.1016/j.jfa.2025.111006","DOIUrl":"10.1016/j.jfa.2025.111006","url":null,"abstract":"<div><div>We consider the energy spectrum <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of harmonic maps from the sphere into a closed Riemannian manifold <em>N</em>. While a well known conjecture asserts that <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is discrete whenever <em>N</em> is analytic, for most analytic targets it is only known that any potential accumulation point of the energy spectrum must be given by the sum of the energies of at least two harmonic spheres. The lowest energy level that could hence potentially be an accumulation point of <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> is thus <span><math><mn>2</mn><msub><mrow><mi>E</mi></mrow><mrow><mtext>min</mtext></mrow></msub></math></span>. In the present paper we exclude this possibility for generic 3 manifolds and prove additional results that establish obstructions to the gluing of harmonic spheres and provide Łojasiewicz-estimates for almost harmonic maps.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111006"},"PeriodicalIF":1.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A remark on the Hölder regularity of solutions to the complex Hessian equation 关于复Hessian方程解的Hölder正则性的注释
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-14 DOI: 10.1016/j.jfa.2025.111005
Sławomir Kołodziej , Ngoc Cuong Nguyen
{"title":"A remark on the Hölder regularity of solutions to the complex Hessian equation","authors":"Sławomir Kołodziej ,&nbsp;Ngoc Cuong Nguyen","doi":"10.1016/j.jfa.2025.111005","DOIUrl":"10.1016/j.jfa.2025.111005","url":null,"abstract":"<div><div>We prove that the Dirichlet problem for the complex Hessian equation has the Hölder continuous solution provided it has a subsolution with this property. Compared to the previous result of Benali-Zeriahi and Charabati-Zeriahi we remove the assumption on the finite total mass of the measure on the right hand side.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111005"},"PeriodicalIF":1.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gagliardo–Nirenberg inequality via a new pointwise estimate 加利亚多-尼伦伯格不等式的一个新的逐点估计
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-11 DOI: 10.1016/j.jfa.2025.110996
Karol Leśnik , Tomáš Roskovec , Filip Soudský
{"title":"Gagliardo–Nirenberg inequality via a new pointwise estimate","authors":"Karol Leśnik ,&nbsp;Tomáš Roskovec ,&nbsp;Filip Soudský","doi":"10.1016/j.jfa.2025.110996","DOIUrl":"10.1016/j.jfa.2025.110996","url":null,"abstract":"<div><div>We prove a new type of pointwise estimate of the Kałamajska–Mazya–Shaposhnikova type, where sparse averaging operators replace the maximal operator. It allows us to extend the Gagliardo–Nirenberg interpolation inequality to all rearrangement invariant Banach function spaces without any assumptions on their upper Boyd index, i.e. omitting problems caused by unboundedness of maximal operator on spaces close to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>. In particular, we remove unnecessary assumptions from the Gagliardo–Nirenberg inequality in the setting of Orlicz and Lorentz spaces. The applied method is new in this context and may be seen as a kind of sparse domination technique fitted to the context of rearrangement invariant Banach function spaces.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 110996"},"PeriodicalIF":1.7,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143855553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Esscher transform and the central limit theorem Esscher变换和中心极限定理
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-11 DOI: 10.1016/j.jfa.2025.110999
Sergey G. Bobkov , Friedrich Götze
{"title":"Esscher transform and the central limit theorem","authors":"Sergey G. Bobkov ,&nbsp;Friedrich Götze","doi":"10.1016/j.jfa.2025.110999","DOIUrl":"10.1016/j.jfa.2025.110999","url":null,"abstract":"<div><div>The paper is devoted to the investigation of Esscher's transform on high dimensional Euclidean spaces in the light of its application to the central limit theorem. With this tool, we explore necessary and sufficient conditions of normal approximation for normalized sums of i.i.d. random vectors in terms of the Rényi divergence of infinite order, extending recent one dimensional results.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110999"},"PeriodicalIF":1.7,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-uniqueness of weak solutions for a logarithmically supercritical hyperdissipative Navier-Stokes system 对数超临界超耗散Navier-Stokes系统弱解的非唯一性
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-03 DOI: 10.1016/j.jfa.2025.110989
Marco Romito , Francesco Triggiano
{"title":"Non-uniqueness of weak solutions for a logarithmically supercritical hyperdissipative Navier-Stokes system","authors":"Marco Romito ,&nbsp;Francesco Triggiano","doi":"10.1016/j.jfa.2025.110989","DOIUrl":"10.1016/j.jfa.2025.110989","url":null,"abstract":"<div><div>Existence of non-unique solutions of finite kinetic energy for the three dimensional Navier-Stokes equations is proved in the slightly supercritical hyper-dissipative setting introduced by Tao <span><span>[20]</span></span>. The result is based on the convex integration techniques of Buckmaster and Vicol <span><span>[3]</span></span>, and extends Luo and Titi <span><span>[16]</span></span> in the slightly supercritical setting. To reach the threshold identified by Tao, we introduce the impulsed Beltrami flows, a variant of the intermittent Beltrami flows of Buckmaster and Vicol.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110989"},"PeriodicalIF":1.7,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信