Hölder regularity of solutions of the steady Boltzmann equation with soft potentials

IF 1.6 2区 数学 Q1 MATHEMATICS
Kung-Chien Wu , Kuan-Hsiang Wang
{"title":"Hölder regularity of solutions of the steady Boltzmann equation with soft potentials","authors":"Kung-Chien Wu ,&nbsp;Kuan-Hsiang Wang","doi":"10.1016/j.jfa.2025.111146","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Hölder regularity of solutions to the steady Boltzmann equation with in-flow boundary condition in bounded and strictly convex domains <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> for gases with cutoff soft potential <span><math><mo>(</mo><mo>−</mo><mn>3</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>0</mn><mo>)</mo></math></span>. We prove that there is a unique solution with a bounded <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm in space and velocity. This solution is Hölder continuous, and its order depends not only on the regularity of the incoming boundary data, but also on the potential power <em>γ</em>. The result for modulated soft potential case <span><math><mo>−</mo><mn>2</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>0</mn></math></span> is similar to hard potential case <span><math><mo>(</mo><mn>0</mn><mo>≤</mo><mi>γ</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></math></span> since we have <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> velocity regularity from collision part. However, we observe that for very soft potential case <span><math><mo>(</mo><mo>−</mo><mn>3</mn><mo>&lt;</mo><mi>γ</mi><mo>≤</mo><mo>−</mo><mn>2</mn><mo>)</mo></math></span>, the regularity in velocity obtained by the collision part is lower (Hölder only), but the boundary regularity still can transfer to solution (in both space and velocity) by transport and collision part under the restriction of <em>γ</em>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111146"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003283","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Hölder regularity of solutions to the steady Boltzmann equation with in-flow boundary condition in bounded and strictly convex domains ΩR3 for gases with cutoff soft potential (3<γ<0). We prove that there is a unique solution with a bounded L norm in space and velocity. This solution is Hölder continuous, and its order depends not only on the regularity of the incoming boundary data, but also on the potential power γ. The result for modulated soft potential case 2<γ<0 is similar to hard potential case (0γ<1) since we have C1 velocity regularity from collision part. However, we observe that for very soft potential case (3<γ2), the regularity in velocity obtained by the collision part is lower (Hölder only), but the boundary regularity still can transfer to solution (in both space and velocity) by transport and collision part under the restriction of γ.
Hölder具有软势的稳定玻尔兹曼方程解的规律性
我们考虑有界和严格凸域内具有流动边界条件的稳定玻尔兹曼方程解的Hölder正则性对于具有截止软势(−3<γ<0)的气体Ω∧R3。证明了在空间和速度上存在一个具有有界L∞范数的唯一解。该解是Hölder连续的,其阶数不仅取决于输入边界数据的规律性,还取决于势幂γ。调制软势情形−2<;γ<;0的结果与硬势情形(0≤γ<1)相似,因为我们从碰撞部分得到了C1速度规律。然而,我们观察到,对于极软势情况(−3<γ≤−2),碰撞部分得到的速度规律性较低(仅Hölder),但在γ的限制下,边界规律性仍然可以通过输运和碰撞部分传递到解(在空间和速度上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信