{"title":"On positivity of the Q-curvatures of conformal metrics","authors":"Mingxiang Li , Xingwang Xu","doi":"10.1016/j.jfa.2025.111011","DOIUrl":"10.1016/j.jfa.2025.111011","url":null,"abstract":"<div><div>We mainly show that for a conformal metric <span><math><mi>g</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></mfrac></mrow></msup><mo>|</mo><mi>d</mi><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span>, if the <span><math><mn>2</mn><mi>m</mi><mo>−</mo></math></span>order Q-curvature <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>)</mo></mrow></msubsup></math></span> is positive and has slow decay barrier near infinity, the lower order Q-curvature <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></msubsup></math></span> are both positive if <em>m</em> is at least two.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111011"},"PeriodicalIF":1.7,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Well-posedness of the obstacle problem for stochastic nonlinear diffusion equations: An entropy formulation","authors":"Kai Du , Ruoyang Liu","doi":"10.1016/j.jfa.2025.111012","DOIUrl":"10.1016/j.jfa.2025.111012","url":null,"abstract":"<div><div>In this paper, we establish the existence, uniqueness and stability results for the obstacle problem associated with a degenerate nonlinear diffusion equation perturbed by conservative gradient noise. Our approach revolves round introducing a new entropy formulation for stochastic variational inequalities. As a consequence, we obtain a novel well-posedness result for the obstacle problem of deterministic porous medium equations with nonlinear reaction terms.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111012"},"PeriodicalIF":1.7,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lp-boundedness of wave operators for fourth order Schrödinger operators with zero resonances on R3","authors":"Haruya Mizutani , Zijun Wan , Xiaohua Yao","doi":"10.1016/j.jfa.2025.111013","DOIUrl":"10.1016/j.jfa.2025.111013","url":null,"abstract":"<div><div>Let <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> be the fourth-order Schrödinger operator on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with a real-valued fast-decaying potential <em>V</em>. If zero is neither a resonance nor an eigenvalue of <em>H</em>, then it was recently shown that the wave operators <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and unbounded at the endpoints <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>=</mo><mo>∞</mo></math></span>.</div><div>This paper is to further establish the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-boundedness of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> that exhibit all types of singularities at the zero energy threshold. We first prove that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> in the first kind resonance case, and then proceed to establish for the second kind resonance case that they are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>3</mn></math></span>, but not if <span><math><mn>3</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span>. In the third kind resonance case, we also show that <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>±</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>,</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> for all <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>3</mn></math></span> and generically unbounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111013"},"PeriodicalIF":1.7,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The direct moving sphere for fractional Laplace equation","authors":"Congming Li , Meiqing Xu , Hui Yang , Ran Zhuo","doi":"10.1016/j.jfa.2025.111010","DOIUrl":"10.1016/j.jfa.2025.111010","url":null,"abstract":"<div><div>This paper works on the direct method of moving spheres and establishes a Liouville-type theorem for the fractional elliptic equation<span><span><span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span></span></span> with general non-linearity. One of the key improvements over the previous work is that we do not require the usual Lipschitz condition. In fact, we only assume the structural condition that <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>α</mi></mrow></mfrac></mrow></msup></math></span> is monotonically decreasing. This differs from the usual approach such as Chen-Li-Li (Adv. Math. 2017), which needs the Lipschitz condition on <em>f</em>, or Chen-Li-Zhang (J. Funct. Anal. 2017), which relies on both the structural condition and the monotonicity of <em>f</em>. We also use the direct moving spheres method to give an alternative proof for the Liouville-type theorem of the fractional Lane-Emden equation in a half space. Similarly, our proof does not depend on the integral representation of solutions compared to existing ones. The methods developed here should also apply to problems involving more general non-local operators, especially if no equivalent integral equations exist.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111010"},"PeriodicalIF":1.7,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlocal Liouville theorems with gradient nonlinearity","authors":"Anup Biswas , Alexander Quaas , Erwin Topp","doi":"10.1016/j.jfa.2025.111008","DOIUrl":"10.1016/j.jfa.2025.111008","url":null,"abstract":"<div><div>In this article we consider a large family of nonlinear nonlocal equations involving gradient nonlinearity and provide a unified approach, based on the Ishii-Lions type technique, to establish Liouville properties of the solutions. We also answer an open problem raised by Cirant and Goffi <span><span>[24]</span></span>. Some applications to regularity issues are also studied.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111008"},"PeriodicalIF":1.7,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phase space analysis of finite and infinite dimensional Fresnel integrals","authors":"Sonia Mazzucchi , Fabio Nicola , S. Ivan Trapasso","doi":"10.1016/j.jfa.2025.111009","DOIUrl":"10.1016/j.jfa.2025.111009","url":null,"abstract":"<div><div>The full characterization of the class of Fresnel integrable functions is an open problem in functional analysis, with significant applications to mathematical physics (Feynman path integrals) and the analysis of the Schrödinger equation. In finite dimension, we prove the Fresnel integrability of functions in the Sjöstrand class <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow></msup></math></span> — a family of continuous and bounded functions, locally enjoying the mild regularity of the Fourier transform of an integrable function. This result broadly extends the current knowledge on the Fresnel integrability of Fourier transforms of finite complex measures, and relies upon ideas and techniques of Gabor wave packet analysis. We also discuss infinite-dimensional extensions of this result. In this connection, we extend and make more concrete the general framework of projective functional extensions introduced by Albeverio and Mazzucchi. In particular, we obtain a concrete example of a continuous linear functional on an infinite-dimensional space beyond the class of Fresnel integrable functions. As an interesting byproduct, we obtain a sharp <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> operator norm bound for the free Schrödinger evolution operator.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111009"},"PeriodicalIF":1.7,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interior W2,δ type estimates for degenerate fully nonlinear elliptic equations with Ln data","authors":"Sun-Sig Byun , Hongsoo Kim , Jehan Oh","doi":"10.1016/j.jfa.2025.111007","DOIUrl":"10.1016/j.jfa.2025.111007","url":null,"abstract":"<div><div>We establish interior <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>δ</mi></mrow></msup></math></span> type estimates for a class of degenerate fully nonlinear elliptic equations with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> data. The main idea of our approach is to slide <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems, as discussed in <span><span>[6]</span></span>, <span><span>[16]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111007"},"PeriodicalIF":1.7,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143874473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of a class of exact solutions of the incompressible Euler equation in a disk","authors":"Guodong Wang","doi":"10.1016/j.jfa.2025.110998","DOIUrl":"10.1016/j.jfa.2025.110998","url":null,"abstract":"<div><div>We prove a sharp orbital stability result for a class of exact steady solutions, expressed in terms of Bessel functions of the first kind, of the two-dimensional incompressible Euler equation in a disk. A special case of these solutions is the truncated Lamb dipole, whose stream function corresponds to the second eigenfunction of the Dirichlet Laplacian. The proof is achieved by establishing a suitable variational characterization for these solutions via conserved quantities of the Euler equation and employing a compactness argument.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110998"},"PeriodicalIF":1.7,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143854844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global wellposedness of general nonlinear evolution equations for distributions on the Fourier half space","authors":"Kenji Nakanishi , Baoxiang Wang","doi":"10.1016/j.jfa.2025.111004","DOIUrl":"10.1016/j.jfa.2025.111004","url":null,"abstract":"<div><div>The Cauchy problem is studied for very general systems of evolution equations, where the time derivative of solution is written by Fourier multipliers in space and analytic nonlinearity, with no other structural requirement. We construct a function space for the Fourier transform embedded in the space of distributions, and establish the global wellposedness with no size restriction. The major restriction on the initial data is that the Fourier transform is supported on the half space, decaying at the boundary in the sense of measure. We also require uniform integrability for the orthogonal directions in the distribution sense, but no other condition. In particular, the initial data may be much more rough than the tempered distributions, and may grow polynomially at the spatial infinity. A simpler argument is also presented for the solutions locally integrable in the frequency. When the Fourier support is slightly more restricted to a conical region, the generality of equations is extremely wide, including those that are even locally illposed in the standard function spaces, such as the backward heat equations, as well as those with infinite derivatives and beyond the natural boundary of the analytic nonlinearity. As more classical examples, our results may be applied to the incompressible and compressible Navier-Stokes and Euler equations, the nonlinear diffusion and wave equations, and so on. In particular, the wellposedness includes uniqueness of very weak solution for those equations, under the Fourier support condition, but with no restriction on regularity or size of solutions. The major drawback of the Fourier support restriction is that the solutions cannot be real valued.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111004"},"PeriodicalIF":1.7,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sharp higher order Sobolev inequality on Riemannian manifolds","authors":"Samuel Zeitler","doi":"10.1016/j.jfa.2025.111001","DOIUrl":"10.1016/j.jfa.2025.111001","url":null,"abstract":"<div><div>Let <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be integers such that <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>></mo><mi>m</mi><mo>≥</mo><mn>1</mn></math></span> and let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> be a closed <em>n</em>-dimensional Riemannian manifold. We prove there exists some <span><math><mi>B</mi><mo>∈</mo><mi>R</mi></math></span> depending only on <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>, <em>m</em>, and <em>n</em> such that for all <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>,<span><span><span><math><msubsup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><munder><mo>∫</mo><mrow><mi>M</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>+</mo><mi>B</mi><msubsup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span></span></span> where <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></mfrac></math></span>, <span><math><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> is the square of the best constant for the embedding <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>m</mi><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is the Sobolev space consisting of functions on <em>M</em> with <em>m</em> weak derivatives in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>=</mo><mi>∇</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> if <em>m</em> is odd. This","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111001"},"PeriodicalIF":1.7,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143864177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}