{"title":"Topological structure of the space of composition operators on the Hardy space of Dirichlet series","authors":"Frédéric Bayart , Maofa Wang , Xingxing Yao","doi":"10.1016/j.jfa.2025.111134","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to study when two composition operators on the Hilbert space of Dirichlet series with square summable coefficients belong to the same component or when their difference is compact. As a corollary we show that if a linear combination of composition operators with polynomial symbols of degree at most 2 is compact, then each composition operator is compact.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111134"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003167","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to study when two composition operators on the Hilbert space of Dirichlet series with square summable coefficients belong to the same component or when their difference is compact. As a corollary we show that if a linear combination of composition operators with polynomial symbols of degree at most 2 is compact, then each composition operator is compact.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis