Journal of Functional Analysis最新文献

筛选
英文 中文
The Monge-Ampère system in dimension two: A regularity improvement 二维的monge - ampantere系统:一种正则性改进
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-23 DOI: 10.1016/j.jfa.2025.111064
Marta Lewicka
{"title":"The Monge-Ampère system in dimension two: A regularity improvement","authors":"Marta Lewicka","doi":"10.1016/j.jfa.2025.111064","DOIUrl":"10.1016/j.jfa.2025.111064","url":null,"abstract":"<div><div>We prove a convex integration result for the Monge-Ampère system introduced in <span><span>[7]</span></span>, in case of dimension <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span> and arbitrary codimension <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>. Our prior result <span><span>[8]</span></span> stated flexibility up to the Hölder regularity <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>k</mi></mrow></mfrac></mrow></msup></math></span>, whereas presently we achieve flexibility up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> when <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> and up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></math></span> for any <em>k</em>. This first result uses the approach closest to that of Källen <span><span>[6]</span></span> in the context of the isometric immersion problem, while the second result uses the double iteration procedure from <span><span>[7]</span></span> combined with the approach of Cao-Hirsch-Inauen <span><span>[1]</span></span>, agreeing with it for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> at the Hölder regularity up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111064"},"PeriodicalIF":1.7,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144169794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted inertia-dissipation-energy approach to doubly nonlinear wave equations 双非线性波动方程的加权惯性-耗散-能量方法
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-22 DOI: 10.1016/j.jfa.2025.111067
Goro Akagi , Verena Bögelein , Alice Marveggio , Ulisse Stefanelli
{"title":"Weighted inertia-dissipation-energy approach to doubly nonlinear wave equations","authors":"Goro Akagi ,&nbsp;Verena Bögelein ,&nbsp;Alice Marveggio ,&nbsp;Ulisse Stefanelli","doi":"10.1016/j.jfa.2025.111067","DOIUrl":"10.1016/j.jfa.2025.111067","url":null,"abstract":"<div><div>We discuss a variational approach to doubly nonlinear wave equations of the form <span><math><mi>ρ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>g</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. This approach hinges on the minimization of a parameter-dependent family of uniformly convex functionals over entire trajectories, namely the so-called Weighted Inertia-Dissipation-Energy (WIDE) functionals. We prove that the WIDE functionals admit minimizers and that the corresponding Euler-Lagrange system is solvable in the strong sense. Moreover, we check that the parameter-dependent minimizers converge, up to subsequences, to a solution of the target doubly nonlinear wave equation as the parameter goes to 0. The analysis relies on specific estimates on the WIDE minimizers, on the decomposition of the subdifferential of the WIDE functional, and on the identification of the nonlinearities in the limit. Eventually, we investigate the viscous limit <span><math><mi>ρ</mi><mo>→</mo><mn>0</mn></math></span>, both at the functional level and on that of the equation.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111067"},"PeriodicalIF":1.7,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144169795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On C1 Whitney extension theorem in Banach spaces Banach空间中的C1 Whitney扩展定理
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-22 DOI: 10.1016/j.jfa.2025.111061
Michal Johanis, Luděk Zajíček
{"title":"On C1 Whitney extension theorem in Banach spaces","authors":"Michal Johanis,&nbsp;Luděk Zajíček","doi":"10.1016/j.jfa.2025.111061","DOIUrl":"10.1016/j.jfa.2025.111061","url":null,"abstract":"<div><div>Our note is a complement to recent articles <span><span>[17]</span></span> (2011) and <span><span>[18]</span></span> (2013) by M. Jiménez-Sevilla and L. Sánchez-González which generalise (the basic statement of) the classical Whitney extension theorem for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smooth real functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to the case of real functions on <em>X</em> (<span><span>[17]</span></span>) and to the case of mappings from <em>X</em> to <em>Y</em> (<span><span>[18]</span></span>) for some Banach spaces <em>X</em> and <em>Y</em>. Since the proof from <span><span>[18]</span></span> contains a serious flaw, we supply a different more transparent detailed proof under (probably) slightly stronger assumptions on <em>X</em> and <em>Y</em>. Our proof gives also extensions results from special sets (e.g. Lipschitz submanifolds or closed convex bodies) under substantially weaker assumptions on <em>X</em> and <em>Y</em>. Further, we observe that the mapping <span><math><mi>F</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>Y</mi><mo>)</mo></math></span> which extends <em>f</em> given on a closed set <span><math><mi>A</mi><mo>⊂</mo><mi>X</mi></math></span> can be, in some cases, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-smooth (or <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>-smooth with <span><math><mi>k</mi><mo>&gt;</mo><mn>1</mn></math></span>) on <span><math><mi>X</mi><mo>∖</mo><mi>A</mi></math></span>. Of course, also this improved result is weaker than Whitney's result (for <span><math><mi>X</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>Y</mi><mo>=</mo><mi>R</mi></math></span>) which asserts that <em>F</em> is even analytic on <span><math><mi>X</mi><mo>∖</mo><mi>A</mi></math></span>. Further, following another Whitney's article and using the above results, we prove results on extensions of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smooth mappings from open (“weakly”) quasiconvex subsets of <em>X</em>. Following the above mentioned articles <span><span>[17]</span></span>, <span><span>[18]</span></span> we also consider the question concerning the Lipschitz constant of <em>F</em> if <em>f</em> is a Lipschitz mapping.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111061"},"PeriodicalIF":1.7,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New pointwise bounds by Riesz potential type operators Riesz势类型算子的新逐点边界
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-22 DOI: 10.1016/j.jfa.2025.111060
Cong Hoang , Kabe Moen , Carlos Pérez Moreno
{"title":"New pointwise bounds by Riesz potential type operators","authors":"Cong Hoang ,&nbsp;Kabe Moen ,&nbsp;Carlos Pérez Moreno","doi":"10.1016/j.jfa.2025.111060","DOIUrl":"10.1016/j.jfa.2025.111060","url":null,"abstract":"<div><div>We investigate new pointwise bounds for a class of rough integral operators, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span>, for a parameter <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>n</mi></math></span> that includes classical rough singular integrals of Calderón and Zygmund, rough hypersingular integrals, and rough fractional integral operators. We prove that the rough integral operators are bounded by a sparse potential operator that depends on the size of the symbol Ω. As a result of our pointwise inequalities, we obtain several new Sobolev mappings of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>:</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111060"},"PeriodicalIF":1.7,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral estimate for the Laplace–Beltrami operator on the hyperbolic half-plane 双曲半平面上Laplace-Beltrami算子的谱估计
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-22 DOI: 10.1016/j.jfa.2025.111059
Marc Rouveyrol
{"title":"Spectral estimate for the Laplace–Beltrami operator on the hyperbolic half-plane","authors":"Marc Rouveyrol","doi":"10.1016/j.jfa.2025.111059","DOIUrl":"10.1016/j.jfa.2025.111059","url":null,"abstract":"<div><div>The purpose of this note is to investigate the concentration properties of spectral projectors on manifolds. This question has been intensively studied (by Logvinenko–Sereda, Nazarov, Jerison–Lebeau, Kovrizhkin, Egidi–Seelmann–Veselić, Burq–Moyano, among others) in connection with the uncertainty principle. We provide the first high-frequency results in a geometric setting which is neither Euclidean nor a perturbation of Euclidean. Namely, we prove the natural (and optimal) uncertainty principle for the spectral projector on the hyperbolic half-plane.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111059"},"PeriodicalIF":1.7,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144138044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the loss and propagation of modulus of continuity for the two-dimensional incompressible Euler equations 二维不可压缩欧拉方程连续模的损失与传播
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-22 DOI: 10.1016/j.jfa.2025.111066
Karim R. Shikh Khalil
{"title":"On the loss and propagation of modulus of continuity for the two-dimensional incompressible Euler equations","authors":"Karim R. Shikh Khalil","doi":"10.1016/j.jfa.2025.111066","DOIUrl":"10.1016/j.jfa.2025.111066","url":null,"abstract":"<div><div>It is known from the work of Koch that the two-dimensional incompressible Euler equations propagate Dini modulus of continuity for the vorticity. In this work, we consider the two-dimensional Euler equations with a modulus of continuity for vorticity rougher than Dini continuous. We first show that the two-dimensional Euler equations propagate an explicit family of moduli of continuity for the vorticity that are rougher than Dini continuity. The main goal of this work is to address the following question: Given a modulus of continuity for the 2D Euler equations, can we always propagate it? The answer to this question is No. We construct a family of moduli of continuity for the 2D Euler equations that are not propagated.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111066"},"PeriodicalIF":1.7,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144138045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Blaschke–Kakutani ellipsoid characterization and Banach's isometric subspaces problem 局部Blaschke-Kakutani椭球表征与Banach等距子空间问题
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-22 DOI: 10.1016/j.jfa.2025.111063
Sergei Ivanov , Daniil Mamaev , Anya Nordskova
{"title":"Local Blaschke–Kakutani ellipsoid characterization and Banach's isometric subspaces problem","authors":"Sergei Ivanov ,&nbsp;Daniil Mamaev ,&nbsp;Anya Nordskova","doi":"10.1016/j.jfa.2025.111063","DOIUrl":"10.1016/j.jfa.2025.111063","url":null,"abstract":"<div><div>We prove the following local version of Blaschke–Kakutani's characterization of ellipsoids: Let <em>V</em> be a finite-dimensional real vector space, <span><math><mi>B</mi><mo>⊂</mo><mi>V</mi></math></span> a convex body with 0 in its interior, and <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>&lt;</mo><mi>dim</mi><mo>⁡</mo><mi>V</mi></math></span> an integer. Suppose that the body <em>B</em> is contained in a cylinder based on the cross-section <span><math><mi>B</mi><mo>∩</mo><mi>X</mi></math></span> for every <em>k</em>-plane <em>X</em> from a connected open set of linear <em>k</em>-planes in <em>V</em>. Then in the region of <em>V</em> swept by these <em>k</em>-planes <em>B</em> coincides with either an ellipsoid, or a cylinder over an ellipsoid, or a cylinder over a <em>k</em>-dimensional base.</div><div>For <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span> we obtain as a corollary a local solution to Banach's isometric subspaces problem: If all cross-sections of <em>B</em> by <em>k</em>-planes from a connected open set are linearly equivalent, then the same conclusion as above holds.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111063"},"PeriodicalIF":1.7,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144169796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact T(1) theorem à la Stein 紧致T(1)定理a la Stein
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-13 DOI: 10.1016/j.jfa.2025.111052
Árpád Bényi , Guopeng Li , Tadahiro Oh , Rodolfo H. Torres
{"title":"Compact T(1) theorem à la Stein","authors":"Árpád Bényi ,&nbsp;Guopeng Li ,&nbsp;Tadahiro Oh ,&nbsp;Rodolfo H. Torres","doi":"10.1016/j.jfa.2025.111052","DOIUrl":"10.1016/j.jfa.2025.111052","url":null,"abstract":"<div><div>We prove a compact <span><math><mi>T</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> theorem, involving quantitative estimates, analogous to the quantitative classical <span><math><mi>T</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> theorem due to Stein. We also discuss the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>-to-<em>CMO</em> mapping properties of non-compact Calderón-Zygmund operators as well as the sequential completeness properties of some subspaces of <em>BMO</em> under different topologies.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 111052"},"PeriodicalIF":1.7,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144106611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shift invariant subspaces of large index in the Bloch space 在Bloch空间中移位大索引不变子空间
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-05-02 DOI: 10.1016/j.jfa.2025.111034
Nikiforos Biehler
{"title":"Shift invariant subspaces of large index in the Bloch space","authors":"Nikiforos Biehler","doi":"10.1016/j.jfa.2025.111034","DOIUrl":"10.1016/j.jfa.2025.111034","url":null,"abstract":"<div><div>We consider the shift operator <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>, defined on the Bloch space and the little Bloch space and we study the corresponding lattice of invariant subspaces. We construct closed, shift invariant subspaces in the Bloch space and the little Bloch space that can have arbitrarily large, but countable, index. On the non-separable Bloch space we construct a closed shift invariant subspace with cardinality equal to the unit interval. Finally we establish several results on the index for the weak-star topology of a Banach space and prove a stability theorem for the index when passing from (norm closed) invariant subspaces of a Banach space to their weak-star closure in its second dual. This is then applied to prove the existence of weak-star closed invariant subspaces of arbitrary index in the Bloch space.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 111034"},"PeriodicalIF":1.7,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prescribing positive curvature with conical singularities on S2 规定S2上具有圆锥奇点的正曲率
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-04-29 DOI: 10.1016/j.jfa.2025.111031
Jingyi Chen , Yuxiang Li , Yunqing Wu
{"title":"Prescribing positive curvature with conical singularities on S2","authors":"Jingyi Chen ,&nbsp;Yuxiang Li ,&nbsp;Yunqing Wu","doi":"10.1016/j.jfa.2025.111031","DOIUrl":"10.1016/j.jfa.2025.111031","url":null,"abstract":"<div><div>For conformal metrics with conical singularities and positive curvature on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, we prove a convergence theorem and apply it to obtain a criterion for nonexistence in an open region of the prescribing data. The core of our study is a fine analysis of the bubble trees and an area identity in the convergence process.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111031"},"PeriodicalIF":1.7,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143895124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信