{"title":"Tingley's problem for Schreier spaces and their p - convexifications","authors":"Micheline Fakhoury","doi":"10.1016/j.jfa.2025.111122","DOIUrl":"10.1016/j.jfa.2025.111122","url":null,"abstract":"<div><div>We describe the surjective isometries of the unit sphere of real Schreier spaces of all orders and their <em>p</em> <!-->-<!--> <!-->convexifications, for <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>. This description allows us to provide for those spaces a positive answer to a special case of Tingley's problem, which asks whether every surjective isometry of the unit sphere of a real Banach space can be extended to a linear isometry of the entire space.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111122"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remarks on Hessian quotient equations on Riemannian manifolds","authors":"Marcin Sroka","doi":"10.1016/j.jfa.2025.111123","DOIUrl":"10.1016/j.jfa.2025.111123","url":null,"abstract":"<div><div>We consider Hessian quotient equations in Riemannian setting as appearing in the problem posed by Delanoë and Urbas. We prove unobstructed second order a priori estimate for the real Hessian quotient equation via the maximum principle argument on Riemannian manifolds in dimension two. This is achieved by introducing new test function and exploiting some fine concavity properties of quotient operator. This result demonstrates that there is intriguing difference between the real case and the complex case, as there are known obstructions for <em>J</em>-equation in complex geometry.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111123"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144572032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convexity, Fourier transforms, and lattice point discrepancy","authors":"Michael Greenblatt","doi":"10.1016/j.jfa.2025.111109","DOIUrl":"10.1016/j.jfa.2025.111109","url":null,"abstract":"<div><div>In a well-known paper by Bruna, Nagel and Wainger <span><span>[5]</span></span>, Fourier transform decay estimates were proved for smooth hypersurfaces of finite line type bounding a convex domain. In this paper, we generalize their results in the following ways. First, for a surface that is locally the graph of a convex real analytic function, we show that a natural analogue holds even when the surface in question is not of finite line type. Secondly, we show a result for a general surface that is locally the graph of a convex <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> function, or a piece of such a surface defined through real analytic equations, that implies an analogous Fourier transform decay theorem in many situations where the oscillatory index is less than 1. In such situations, for a compact surface the exponent provided is sharp. This result has implications for lattice point discrepancy problems, which we describe.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111109"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144572084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hausdorffness of certain nilpotent cohomology spaces","authors":"Fabian Januszewski , Binyong Sun , Hao Ying","doi":"10.1016/j.jfa.2025.111120","DOIUrl":"10.1016/j.jfa.2025.111120","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> be a smooth representation of a compact Lie group <em>G</em> on a quasi-complete locally convex complex topological vector space. We show that the Lie algebra cohomology space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>•</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> and the Lie algebra homology space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>•</mo></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> are both Hausdorff, where <span><math><mi>u</mi></math></span> is the nilpotent radical of a parabolic subalgebra of the complexified Lie algebra <span><math><mi>g</mi></math></span> of <em>G</em>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111120"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An epiperimetric inequality for odd frequencies in the thin obstacle problem","authors":"Matteo Carducci , Bozhidar Velichkov","doi":"10.1016/j.jfa.2025.111115","DOIUrl":"10.1016/j.jfa.2025.111115","url":null,"abstract":"<div><div>We prove for the first time an epiperimetric inequality for the thin obstacle Weiss' energy with odd frequencies and we apply it to solutions to the thin obstacle problem with general <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>γ</mi></mrow></msup></math></span> obstacle. In particular, we obtain the rate of convergence of the blow-up sequences at points of odd frequencies and the regularity of the strata of the corresponding contact set. We also recover the frequency gap for odd frequencies obtained by Savin and Yu.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111115"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximal amenability of the radial subalgebra in free quantum group factors","authors":"Roland Vergnioux , Xumin Wang","doi":"10.1016/j.jfa.2025.111118","DOIUrl":"10.1016/j.jfa.2025.111118","url":null,"abstract":"<div><div>We show that the radial MASA in the orthogonal free quantum group algebra <span><math><mi>L</mi><mo>(</mo><mi>F</mi><msub><mrow><mi>O</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> is maximal amenable if <em>N</em> is large enough, using the Asymptotic Orthogonality Property. This relies on a detailed study of the corresponding bimodule, for which we construct in particular a quantum analogue of Rădulescu's basis. As a byproduct we also obtain the value of the Pukánszky invariant for this MASA.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111118"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time periodic and almost periodic viscosity solutions of contact Hamilton-Jacobi equations on Tn","authors":"Kaizhi Wang , Jun Yan , Kai Zhao","doi":"10.1016/j.jfa.2025.111121","DOIUrl":"10.1016/j.jfa.2025.111121","url":null,"abstract":"<div><div>This paper concerns with the time periodic viscosity solution problem for a class of evolutionary contact Hamilton-Jacobi equations with time independent Hamiltonians on the torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Under certain suitable assumptions we show that the equation has a non-trivial <em>T</em>-periodic viscosity solution if and only if <span><math><mi>T</mi><mo>∈</mo><mi>D</mi></math></span>, where <em>D</em> is a dense subset of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>. Moreover, we clarify the structure of <em>D</em>. As a consequence, we also study the existence of Bohr almost periodic viscosity solutions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111121"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Limit formulas for norms of tensor power operators","authors":"Guillaume Aubrun , Alexander Müller-Hermes","doi":"10.1016/j.jfa.2025.111113","DOIUrl":"10.1016/j.jfa.2025.111113","url":null,"abstract":"<div><div>Given an operator <span><math><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> between Banach spaces, we consider its tensor powers <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> as operators from the <em>k</em>-fold injective tensor product of <em>X</em> to the <em>k</em>-fold projective tensor product of <em>Y</em>. We show that after taking the <em>k</em>th root, the operator norm of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> converges to the 2-dominated norm <span><math><msubsup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>, one of the standard operator ideal norms.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111113"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144570097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The spectral gap of a Gaussian quantum Markovian generator","authors":"F. Fagnola, D. Poletti, E. Sasso, V. Umanità","doi":"10.1016/j.jfa.2025.111119","DOIUrl":"10.1016/j.jfa.2025.111119","url":null,"abstract":"<div><div>Gaussian quantum Markov semigroups are the natural non-commutative extension of classical Ornstein-Uhlenbeck semigroups. They arise in open quantum systems of bosons where canonical non-commuting random variables of positions and momenta come into play. If there exists a faithful invariant density we explicitly compute the optimal exponential convergence rate, namely the spectral gap of the generator, in non-commutative <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> spaces determined by the invariant density showing that the exact value is the lowest eigenvalue of a certain matrix determined by the diffusion and drift matrices. The spectral gap turns out to depend on the non-commutative <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> space considered, whether the one determined by the so-called GNS or KMS multiplication by the square root of the invariant density. In the first case, it is strictly positive if and only if there is the maximum number of linearly independent noises. While, we exhibit explicit examples in which it is strictly positive only with KMS multiplication. We do not assume any symmetry or quantum detailed balance condition with respect to the invariant density.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111119"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hugo Aimar , Ivana Gómez , Ignacio Gómez Vargas , Francisco Javier Martín-Reyes
{"title":"One-sided Muckenhoupt weights and one-sided weakly porous sets in R","authors":"Hugo Aimar , Ivana Gómez , Ignacio Gómez Vargas , Francisco Javier Martín-Reyes","doi":"10.1016/j.jfa.2025.111110","DOIUrl":"10.1016/j.jfa.2025.111110","url":null,"abstract":"<div><div>In this work, we introduce the geometric concept of one-sided weakly porous sets in the real line and show that a set <span><math><mi>E</mi><mo>⊂</mo><mi>R</mi></math></span> satisfies <span><math><mi>d</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>∈</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for some <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span> if and only if <em>E</em> is right-sided weakly porous. Furthermore, we find that the property of being both left-sided and right-sided weakly porous is equivalent to the recent weakly porous condition discussed in the bibliography, which, in turn, was previously found to be intimately related to the usual class of Muckenhoupt weights <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111110"},"PeriodicalIF":1.7,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}