Journal of Functional Analysis最新文献

筛选
英文 中文
Optimal bounds for the Dunkl kernel in the dihedral case 二面情况下邓克尔核的最优边界
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-07 DOI: 10.1016/j.jfa.2024.110743
Jean-Philippe Anker , Bartosz Trojan
{"title":"Optimal bounds for the Dunkl kernel in the dihedral case","authors":"Jean-Philippe Anker ,&nbsp;Bartosz Trojan","doi":"10.1016/j.jfa.2024.110743","DOIUrl":"10.1016/j.jfa.2024.110743","url":null,"abstract":"<div><div>We establish sharp upper and lower estimates of the Dunkl kernel in the case of dihedral groups.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110743"},"PeriodicalIF":1.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalar curvature rigidity and the higher mapping degree 标量曲率刚度和高映射度
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-07 DOI: 10.1016/j.jfa.2024.110744
Thomas Tony
{"title":"Scalar curvature rigidity and the higher mapping degree","authors":"Thomas Tony","doi":"10.1016/j.jfa.2024.110744","DOIUrl":"10.1016/j.jfa.2024.110744","url":null,"abstract":"<div><div>A closed connected oriented Riemannian manifold <em>N</em> with non-vanishing Euler characteristic, non-negative curvature operator and <span><math><mn>0</mn><mo>&lt;</mo><mn>2</mn><msub><mrow><mi>Ric</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is area-rigid in the sense that any area non-increasing spin map <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> with non-vanishing <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree and <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>≥</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span> is a Riemannian submersion with <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>=</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span>. This is due to Goette and Semmelmann and generalizes a result by Llarull. In this article, we show area-rigidity for not necessarily orientable manifolds with respect to a larger class of maps <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> by replacing the topological condition on the <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree by a less restrictive condition involving the so-called higher mapping degree. This includes fiber bundles over even dimensional spheres with enlargeable fibers, e.g. <span><math><msub><mrow><mi>pr</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. We develop a technique to extract from a non-vanishing higher index a geometrically useful family of almost <figure><img></figure>-harmonic sections. This also leads to a new proof of the fact that any closed connected spin manifold with non-negative scalar curvature and non-trivial Rosenberg index is Ricci flat.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110744"},"PeriodicalIF":1.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C⁎-algebras associated to directed graphs of groups, and models of Kirchberg algebras 与群的有向图相关联的 C⁎ 算法,以及基希贝格算法模型
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110740
Victor Wu
{"title":"C⁎-algebras associated to directed graphs of groups, and models of Kirchberg algebras","authors":"Victor Wu","doi":"10.1016/j.jfa.2024.110740","DOIUrl":"10.1016/j.jfa.2024.110740","url":null,"abstract":"<div><div>We introduce <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras associated to directed graphs of groups. In particular, we associate a combinatorial <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra to each row-finite directed graph of groups with no sources, and show that this <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra is Morita equivalent to the crossed product coming from the corresponding group action on the boundary of a directed tree. Finally, we show that these <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras (and their Morita equivalent crossed products) contain the class of stable UCT Kirchberg algebras.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110740"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pure ⁎-homomorphisms 纯⁎同构
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110739
Joan Bosa , Eduard Vilalta
{"title":"Pure ⁎-homomorphisms","authors":"Joan Bosa ,&nbsp;Eduard Vilalta","doi":"10.1016/j.jfa.2024.110739","DOIUrl":"10.1016/j.jfa.2024.110739","url":null,"abstract":"<div><div>We introduce and study the notion of pureness for *-homomorphisms and, more generally, for cpc order-zero maps. After providing various important examples of pureness, we show our main result: Any composition of two pure maps factors through a pure object up to Cuntz equivalence. This is used to obtain several factorization results at the level of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110739"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-window STFT phase retrieval: Lattice uniqueness 多窗口 STFT 相位检索:晶格唯一性
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110733
Philipp Grohs , Lukas Liehr , Martin Rathmair
{"title":"Multi-window STFT phase retrieval: Lattice uniqueness","authors":"Philipp Grohs ,&nbsp;Lukas Liehr ,&nbsp;Martin Rathmair","doi":"10.1016/j.jfa.2024.110733","DOIUrl":"10.1016/j.jfa.2024.110733","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Short-time Fourier transform (STFT) phase retrieval refers to the reconstruction of a function &lt;em&gt;f&lt;/em&gt; from its spectrogram, i.e., the magnitudes of its short-time Fourier transform &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with window function &lt;em&gt;g&lt;/em&gt;. While it is known that for appropriate windows, any function &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; can be reconstructed from the full spectrogram &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, in practical scenarios, the reconstruction must be achieved from discrete samples, typically taken on a lattice. It turns out that the sampled problem becomes much more subtle: recent results have demonstrated that uniqueness via lattice-sampling is unachievable, irrespective of the choice of the window function or the lattice density. In the present paper, we initiate the study of multi-window STFT phase retrieval as a way to effectively bypass the discretization barriers encountered in the single-window case. By establishing a link between multi-window Gabor systems, sampling in Fock space, and phase retrieval for finite frames, we derive conditions under which square-integrable functions can be uniquely recovered from spectrogram samples on a lattice. Specifically, we provide conditions on window functions &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, such that every &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is determined up to a global phase from&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; whenever &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;GL&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; satisfies the density condition &lt;span&gt;&lt;math&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;det&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. For real","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110733"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Classifying decomposition and wavelet coorbit spaces using coarse geometry” [J. Funct. Anal. 283(9) (2022) 109637] 利用粗几何学对分解和小波同位空间进行分类》[《函数分析杂志》283(9) (2022) 109637]勘误表
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110714
Hartmut Führ , René Koch
{"title":"Corrigendum to “Classifying decomposition and wavelet coorbit spaces using coarse geometry” [J. Funct. Anal. 283(9) (2022) 109637]","authors":"Hartmut Führ ,&nbsp;René Koch","doi":"10.1016/j.jfa.2024.110714","DOIUrl":"10.1016/j.jfa.2024.110714","url":null,"abstract":"","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110714"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing non-AMNM weighted convolution algebras for every semilattice of infinite breadth 为每个无限广度半网格构建非AMNM加权卷积代数
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110735
Yemon Choi , Mahya Ghandehari , Hung Le Pham
{"title":"Constructing non-AMNM weighted convolution algebras for every semilattice of infinite breadth","authors":"Yemon Choi ,&nbsp;Mahya Ghandehari ,&nbsp;Hung Le Pham","doi":"10.1016/j.jfa.2024.110735","DOIUrl":"10.1016/j.jfa.2024.110735","url":null,"abstract":"<div><div>The AMNM property for commutative Banach algebras is a form of Ulam stability for multiplicative linear functionals. We show that on any semilattice of infinite breadth, one may construct a weight for which the resulting weighted convolution algebra fails to have the AMNM property. Our work is the culmination of a trilogy started in <span><span>[4]</span></span> and continued in <span><span>[5]</span></span>. In particular, we obtain a refinement of the main result of <span><span>[5]</span></span>, by establishing a dichotomy for union-closed set systems that has a Ramsey-theoretic flavour.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110735"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximated harmonic maps with tension fields in Zygmund class 具有齐格蒙类张力场的近似谐波映射
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110736
Jiayu Li , Xiangrong Zhu
{"title":"Approximated harmonic maps with tension fields in Zygmund class","authors":"Jiayu Li ,&nbsp;Xiangrong Zhu","doi":"10.1016/j.jfa.2024.110736","DOIUrl":"10.1016/j.jfa.2024.110736","url":null,"abstract":"<div><div>Suppose that <em>u</em> is a map from <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> to a compact smooth Riemannian manifold <em>N</em> with bounded energy. We show that there exists a constant <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span> which depends only on <em>N</em> and <span><math><mi>E</mi><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> such that if the tension field <em>τ</em> belongs to Zygmund class <span><math><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo>⁡</mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span>, then the Hopf differential of <em>u</em> belongs to the Zygmund class <span><math><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>⁡</mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> and the norm <span><math><msub><mrow><mo>‖</mo><mi>h</mi><mo>‖</mo></mrow><mrow><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>⁡</mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></msub></math></span> depends only on <span><math><mi>N</mi><mo>,</mo><mi>E</mi><mo>(</mo><mi>u</mi><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mo>‖</mo><mi>τ</mi><mo>‖</mo></mrow><mrow><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo>⁡</mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></mrow></msub></math></span>. As a direct corollary, we obtain the energy identity and necklessness of a blow-up sequence <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with bounded energy <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and bounded <span><math><mi>τ</mi><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> in <span><math><mi>L</mi><msup><mrow><mi>ln</mi></mrow><mrow><mi>λ</mi></mrow></msup><mo>⁡</mo><mi>L</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110736"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poisson transform and unipotent complex geometry 泊松变换和单能复几何
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110742
Heiko Gimperlein , Bernhard Krötz , Luz Roncal , Sundaram Thangavelu
{"title":"Poisson transform and unipotent complex geometry","authors":"Heiko Gimperlein ,&nbsp;Bernhard Krötz ,&nbsp;Luz Roncal ,&nbsp;Sundaram Thangavelu","doi":"10.1016/j.jfa.2024.110742","DOIUrl":"10.1016/j.jfa.2024.110742","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Our concern is with Riemannian symmetric spaces &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of the non-compact type and more precisely with the Poisson transform &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; which maps generalized functions on the boundary ∂&lt;em&gt;Z&lt;/em&gt; to &lt;em&gt;λ&lt;/em&gt;-eigenfunctions on &lt;em&gt;Z&lt;/em&gt;. Special emphasis is given to a maximal unipotent group &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; which naturally acts on both &lt;em&gt;Z&lt;/em&gt; and ∂&lt;em&gt;Z&lt;/em&gt;. The &lt;em&gt;N&lt;/em&gt;-orbits on &lt;em&gt;Z&lt;/em&gt; are parametrized by a torus &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (Iwasawa) and letting the level &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; tend to 0 on a ray we retrieve &lt;em&gt;N&lt;/em&gt; via &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;lim&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; as an open dense orbit in ∂&lt;em&gt;Z&lt;/em&gt; (Bruhat). For positive parameters &lt;em&gt;λ&lt;/em&gt; the Poisson transform &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is defined and injective for functions &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and we give a novel characterization of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in terms of complex analysis. For that we view eigenfunctions &lt;span&gt;&lt;math&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; as families &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of functions on the &lt;em&gt;N&lt;/em&gt;-orbits, i.e. &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The general theory then tells us that there is a tube domain &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;exp&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; such that each &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; extends to a holomorphic function on the scaled tube &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;exp&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;Ad&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We ","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110742"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lp estimates of the maximal Schrödinger operator in Rn Rn 中最大薛定谔算子的 Lp 估计值
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-11-06 DOI: 10.1016/j.jfa.2024.110737
Xiumin Du, Jianhui Li
{"title":"Lp estimates of the maximal Schrödinger operator in Rn","authors":"Xiumin Du,&nbsp;Jianhui Li","doi":"10.1016/j.jfa.2024.110737","DOIUrl":"10.1016/j.jfa.2024.110737","url":null,"abstract":"<div><div>We obtain <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> estimates of the maximal Schrödinger operator in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> using polynomial partitioning, bilinear refined Strichartz estimates, and weighted restriction estimates.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110737"},"PeriodicalIF":1.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信