缓变分数阶Cauchy问题解的极大正则性

IF 1.6 2区 数学 Q1 MATHEMATICS
Edgardo Alvarez , Carlos Lizama , Marina Murillo-Arcila
{"title":"缓变分数阶Cauchy问题解的极大正则性","authors":"Edgardo Alvarez ,&nbsp;Carlos Lizama ,&nbsp;Marina Murillo-Arcila","doi":"10.1016/j.jfa.2025.111196","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a Banach space. Given a closed linear operator <em>A</em> defined on <em>X</em> we show that, in vector-valued Hölder spaces <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>,</mo><mi>X</mi><mo>)</mo><mspace></mspace><mspace></mspace><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></math></span>, maximal regularity for the abstract Cauchy problem can be characterized solely in terms of a spectral property of the operator <em>A</em>, when we equip the Cauchy problem with the tempered fractional derivative. In particular, we show that generators of bounded analytic semigroups admit maximal regularity.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111196"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal regularity of solutions for the tempered fractional Cauchy problem\",\"authors\":\"Edgardo Alvarez ,&nbsp;Carlos Lizama ,&nbsp;Marina Murillo-Arcila\",\"doi\":\"10.1016/j.jfa.2025.111196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>X</em> be a Banach space. Given a closed linear operator <em>A</em> defined on <em>X</em> we show that, in vector-valued Hölder spaces <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mi>R</mi><mo>,</mo><mi>X</mi><mo>)</mo><mspace></mspace><mspace></mspace><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></math></span>, maximal regularity for the abstract Cauchy problem can be characterized solely in terms of a spectral property of the operator <em>A</em>, when we equip the Cauchy problem with the tempered fractional derivative. In particular, we show that generators of bounded analytic semigroups admit maximal regularity.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 1\",\"pages\":\"Article 111196\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003787\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003787","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设X是巴拿赫空间。给定一个定义在X上的闭线性算子a,我们证明了在向量值Hölder空间Cα(R,X)(0<α<1)中,当我们给柯西问题赋予缓变分数阶导数时,抽象柯西问题的最大正则性可以仅用算子a的谱性质来表征。特别地,我们证明了有界解析半群的生成子具有极大正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal regularity of solutions for the tempered fractional Cauchy problem
Let X be a Banach space. Given a closed linear operator A defined on X we show that, in vector-valued Hölder spaces Cα(R,X)(0<α<1), maximal regularity for the abstract Cauchy problem can be characterized solely in terms of a spectral property of the operator A, when we equip the Cauchy problem with the tempered fractional derivative. In particular, we show that generators of bounded analytic semigroups admit maximal regularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信