A generalization of Grünbaum's inequality in RCD(0,N)-spaces

IF 1.6 2区 数学 Q1 MATHEMATICS
Victor-Emmanuel Brunel , Shin-ichi Ohta , Jordan Serres
{"title":"A generalization of Grünbaum's inequality in RCD(0,N)-spaces","authors":"Victor-Emmanuel Brunel ,&nbsp;Shin-ichi Ohta ,&nbsp;Jordan Serres","doi":"10.1016/j.jfa.2025.111210","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize Grünbaum's classical inequality in convex geometry to curved spaces with nonnegative Ricci curvature, precisely, to <span><math><mrow><mi>RCD</mi></mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></math></span>-spaces with <span><math><mi>N</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> as well as weighted Riemannian manifolds of <span><math><msub><mrow><mi>Ric</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>≥</mo><mn>0</mn></math></span> for <span><math><mi>N</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>. Our formulation makes use of the isometric splitting theorem; given a convex set Ω and the Busemann function associated with any straight line, the volume of the intersection of Ω and any sublevel set of the Busemann function that contains a barycenter of Ω is bounded from below in terms of <em>N</em>. We also extend this inequality beyond uniform distributions on convex sets. Moreover, we establish some rigidity results by using the localization method, and the stability problem is also studied.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111210"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003921","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize Grünbaum's classical inequality in convex geometry to curved spaces with nonnegative Ricci curvature, precisely, to RCD(0,N)-spaces with N(1,) as well as weighted Riemannian manifolds of RicN0 for N(,1){}. Our formulation makes use of the isometric splitting theorem; given a convex set Ω and the Busemann function associated with any straight line, the volume of the intersection of Ω and any sublevel set of the Busemann function that contains a barycenter of Ω is bounded from below in terms of N. We also extend this inequality beyond uniform distributions on convex sets. Moreover, we establish some rigidity results by using the localization method, and the stability problem is also studied.
RCD(0,N)-空间中gr nbaum不等式的推广
我们将凸几何中的gr nbaum经典不等式推广到具有非负里奇曲率的弯曲空间,准确地说,推广到RCD(0,N)- N∈(1,∞)的空间以及N∈(−∞,−1)∪{∞}时RicN≥0的权黎曼流形。我们的公式利用了等距分裂定理;给定一个凸集Ω和与任何直线相关的Busemann函数,Ω与包含质心Ω的Busemann函数的任何子水平集的交点的体积从下以n为界。我们还将这个不等式推广到凸集上的均匀分布之外。此外,我们还利用局部化方法建立了一些刚度结果,并对稳定性问题进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信