A priori estimates of Mizohata-Takeuchi type for the Navier-Lamé operator

IF 1.6 2区 数学 Q1 MATHEMATICS
J.A. Barceló , A. Ruiz , M.C. Vilela , J. Wright
{"title":"A priori estimates of Mizohata-Takeuchi type for the Navier-Lamé operator","authors":"J.A. Barceló ,&nbsp;A. Ruiz ,&nbsp;M.C. Vilela ,&nbsp;J. Wright","doi":"10.1016/j.jfa.2025.111204","DOIUrl":null,"url":null,"abstract":"<div><div>The Mizohata-Takeuchi conjecture for the resolvent of the Navier-Lamé equation is a weighted estimate with weights in the so-called Mizohata-Takeuchi class for this operator when one approaches the spectrum (Limiting Absorption Principles). We prove this conjecture in dimensions 2 and 3 for weights with a radial majorant in the Mizohata-Takeuchi class. This result can be seen as an extension of the analogue for the Laplacian given in <span><span>[8]</span></span>. We also prove that radial weights in this class are not invariant for the Hardy-Littlewood maximal function, hence the methods in <span><span>[6]</span></span> used to extend estimates for the Laplacian to the Navier-Lamé case, do not work.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111204"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003866","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Mizohata-Takeuchi conjecture for the resolvent of the Navier-Lamé equation is a weighted estimate with weights in the so-called Mizohata-Takeuchi class for this operator when one approaches the spectrum (Limiting Absorption Principles). We prove this conjecture in dimensions 2 and 3 for weights with a radial majorant in the Mizohata-Takeuchi class. This result can be seen as an extension of the analogue for the Laplacian given in [8]. We also prove that radial weights in this class are not invariant for the Hardy-Littlewood maximal function, hence the methods in [6] used to extend estimates for the Laplacian to the Navier-Lamé case, do not work.
navier - lam算子的Mizohata-Takeuchi型先验估计
navier - lam方程解的Mizohata-Takeuchi猜想是在接近谱(极限吸收原理)时对该算子的所谓Mizohata-Takeuchi类加权估计。我们在2维和3维中证明了在Mizohata-Takeuchi类中具有径向支配权的权值。这个结果可以看作是[8]中给出的拉普拉斯式类比的推广。我们还证明了该类中的径向权值对于Hardy-Littlewood极大函数不是不变的,因此[6]中用于将拉普拉斯估计扩展到navier - lam情况的方法不起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信