Journal of Functional Analysis最新文献

筛选
英文 中文
On the classification of function algebras on subvarieties of noncommutative operator balls 论非交换算子球子变量上的函数代数分类
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-10-18 DOI: 10.1016/j.jfa.2024.110703
Jeet Sampat, Orr Moshe Shalit
{"title":"On the classification of function algebras on subvarieties of noncommutative operator balls","authors":"Jeet Sampat,&nbsp;Orr Moshe Shalit","doi":"10.1016/j.jfa.2024.110703","DOIUrl":"10.1016/j.jfa.2024.110703","url":null,"abstract":"<div><div>We study algebras of bounded noncommutative (nc) functions on unit balls of operator spaces (nc operator balls) and on their subvarieties. Considering the example of the nc unit polydisk we show that these algebras, while having a natural operator algebra structure, might not be the multiplier algebra of any reasonable nc reproducing kernel Hilbert space (RKHS). After examining additional subtleties of the nc RKHS approach, we turn to study the structure and representation theory of these algebras using function theoretic and operator algebraic tools. We show that the underlying nc variety is a complete invariant for the algebra of uniformly continuous nc functions on a homogeneous subvariety, in the sense that two such algebras are completely isometrically isomorphic if and only if the subvarieties are nc biholomorphic. We obtain extension and rigidity results for nc maps between subvarieties of nc operator balls corresponding to injective spaces that imply that a biholomorphism between homogeneous varieties extends to a biholomorphism between the ambient balls, which can be modified to a linear isomorphism. Thus, the algebra of uniformly continuous nc functions on nc operator balls, and even its restriction to certain subvarieties, completely determine the operator space up to completely isometric isomorphism.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous asymmetric Doob inequalities in noncommutative symmetric spaces 非交换对称空间中的连续非对称 Doob 不等式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-10-15 DOI: 10.1016/j.jfa.2024.110701
Yong Jiao, Hui Li, Sijie Luo, Lian Wu
{"title":"Continuous asymmetric Doob inequalities in noncommutative symmetric spaces","authors":"Yong Jiao,&nbsp;Hui Li,&nbsp;Sijie Luo,&nbsp;Lian Wu","doi":"10.1016/j.jfa.2024.110701","DOIUrl":"10.1016/j.jfa.2024.110701","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be a noncommutative probability space equipped with a filtration &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; whose union is &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-dense in &lt;span&gt;&lt;math&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the associated conditional expectations. We prove in the present paper that if the symmetric space &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Int&lt;/mi&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;em&gt;E&lt;/em&gt; is &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-convex and &lt;em&gt;w&lt;/em&gt;-concave with &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, then the following holds:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; provided &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. Similar result holds for &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, if &lt;span&gt;&lt;math&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Int&lt;/mi&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; and &lt;em&gt;E&lt;/em&gt; is &lt;em&gt;w&lt;/em&gt;-concave with &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional L1-Lp inequalities in the CAR algebra CAR 代数中的函数 L1-Lp 不等式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-10-15 DOI: 10.1016/j.jfa.2024.110700
Yong Jiao, Sijie Luo, Dejian Zhou
{"title":"Functional L1-Lp inequalities in the CAR algebra","authors":"Yong Jiao,&nbsp;Sijie Luo,&nbsp;Dejian Zhou","doi":"10.1016/j.jfa.2024.110700","DOIUrl":"10.1016/j.jfa.2024.110700","url":null,"abstract":"<div><div>In the present paper, we use the semigroup method to investigate various functional inequalities invoking <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> norms in the framework of canonical anti-commuting relations algebra (CAR algebra for short). As the main results, we obtain the Poincaré inequality for Talagrand type sum, Eldan-Gross inequality for projections, and the Talagrand influence inequality along with its strengthening form in the CAR algebra. All our results strengthen the noncommutative Poincaré inequality of Efraim and Lust-Piquard at several points. We conclude the paper with two applications of our inequalities. In the first application, we apply the noncommutative Eldan-Gross inequality to derive two KKL-type inequalities in the CAR algebra, which are closely related to the quantum KKL conjecture of Montanaro and Osborne. The second application is the CAR algebra counterpart of the superconcentration phenomenon derived from the noncommutative Talagrand influence inequality.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inclusions of simple C⁎-algebras arising from compact group actions 由紧凑群作用产生的简单 C⁎-代数的夹杂物
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-10-15 DOI: 10.1016/j.jfa.2024.110702
Miho Mukohara
{"title":"Inclusions of simple C⁎-algebras arising from compact group actions","authors":"Miho Mukohara","doi":"10.1016/j.jfa.2024.110702","DOIUrl":"10.1016/j.jfa.2024.110702","url":null,"abstract":"<div><div>Inclusions of operator algebras have long been studied. In particular, inclusions arising from actions of compact groups on factors were studied by Izumi-Longo-Popa and others. The correspondence between intermediate subfactors and subgroups is called the Galois correspondence. Analogues for actions on C<sup>⁎</sup>-algebras have been studied by Izumi, Cameron-Smith, Peligrad, and others. In this article, we give examples of compact group actions on simple C<sup>⁎</sup>-algebras for which the Galois correspondence holds.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On dual Kadec norms 关于双卡德克规范
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-10-09 DOI: 10.1016/j.jfa.2024.110698
Petr Hájek
{"title":"On dual Kadec norms","authors":"Petr Hájek","doi":"10.1016/j.jfa.2024.110698","DOIUrl":"10.1016/j.jfa.2024.110698","url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mo>‖</mo><mo>⋅</mo><mo>‖</mo><mo>)</mo></math></span> be a Banach space such that all <span><math><msup><mrow><mi>w</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convergent sequences in the dual unit sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span> are also norm convergent. Then the weak<sup>⁎</sup> and norm topologies agree on <span><math><msub><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msub></math></span>. By known results it implies that <em>X</em> has a renorming whose dual is locally uniformly rotund, hence also <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Fréchet smooth. In particular, <em>X</em> is an Asplund space. Our results also lend an alternative proof of the celebrated Josefson-Nissenzweig theorem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imprimitivity theorems and self-similar actions on Fell bundles 费尔束上的本构定理和自相似作用
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-10-09 DOI: 10.1016/j.jfa.2024.110699
Anna Duwenig , Boyu Li
{"title":"Imprimitivity theorems and self-similar actions on Fell bundles","authors":"Anna Duwenig ,&nbsp;Boyu Li","doi":"10.1016/j.jfa.2024.110699","DOIUrl":"10.1016/j.jfa.2024.110699","url":null,"abstract":"<div><div>We introduce the notion of self-similar actions of groupoids on other groupoids and Fell bundles. This leads to a new imprimitivity theorem arising from such dynamics, generalizing many earlier imprimitivity theorems involving group and groupoid actions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative observability for one-dimensional Schrödinger equations with potentials 带电势的一维薛定谔方程的定量可观测性
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-09-19 DOI: 10.1016/j.jfa.2024.110695
Pei Su , Chenmin Sun , Xu Yuan
{"title":"Quantitative observability for one-dimensional Schrödinger equations with potentials","authors":"Pei Su ,&nbsp;Chenmin Sun ,&nbsp;Xu Yuan","doi":"10.1016/j.jfa.2024.110695","DOIUrl":"10.1016/j.jfa.2024.110695","url":null,"abstract":"<div><div>In this note, we prove the quantitative observability with an explicit control cost for the 1D Schrödinger equation over <span><math><mi>R</mi></math></span> with real-valued, bounded continuous potential on thick sets. Our proof relies on different techniques for low-frequency and high-frequency estimates. In particular, we extend the large time observability result for the 1D free Schrödinger equation in Theorem 1.1 of Huang-Wang-Wang <span><span>[20]</span></span> to any short time. As another byproduct, we extend the spectral inequality of Lebeau-Moyano <span><span>[27]</span></span> for real-analytic potentials to bounded continuous potentials in the one-dimensional case.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the improvement of Hölder seminorms in superquadratic Hamilton-Jacobi equations 论超二次汉密尔顿-雅可比方程中霍尔德半矩的改进
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-09-19 DOI: 10.1016/j.jfa.2024.110692
Marco Cirant
{"title":"On the improvement of Hölder seminorms in superquadratic Hamilton-Jacobi equations","authors":"Marco Cirant","doi":"10.1016/j.jfa.2024.110692","DOIUrl":"10.1016/j.jfa.2024.110692","url":null,"abstract":"<div><div>We show in this paper that maximal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-regularity for time-dependent viscous Hamilton-Jacobi equations with unbounded right-hand side and superquadratic <em>γ</em>-growth in the gradient holds in the full range <span><math><mi>q</mi><mo>&gt;</mo><mo>(</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>)</mo><mfrac><mrow><mi>γ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></math></span>. Our approach is based on new <span><math><mfrac><mrow><mi>γ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>γ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></math></span>-Hölder estimates, which are consequence of the decay at small scales of suitable nonlinear space and time Hölder quotients. This is obtained by proving suitable oscillation estimates, that also give in turn some Liouville type results for entire solutions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002212362400380X/pdfft?md5=9f67759f78f3d63a96e6edeef4bf4034&pid=1-s2.0-S002212362400380X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation of SBV functions with possibly infinite jump set 可能具有无限跳跃集的 SBV 函数的近似值
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-09-19 DOI: 10.1016/j.jfa.2024.110686
Sergio Conti , Matteo Focardi , Flaviana Iurlano
{"title":"Approximation of SBV functions with possibly infinite jump set","authors":"Sergio Conti ,&nbsp;Matteo Focardi ,&nbsp;Flaviana Iurlano","doi":"10.1016/j.jfa.2024.110686","DOIUrl":"10.1016/j.jfa.2024.110686","url":null,"abstract":"<div><div>We prove an approximation result for functions <span><math><mi>u</mi><mo>∈</mo><mi>S</mi><mi>B</mi><mi>V</mi><mo>(</mo><mi>Ω</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> such that ∇<em>u</em> is <em>p</em>-integrable, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mo>|</mo><mo>[</mo><mi>u</mi><mo>]</mo><mo>|</mo><mo>)</mo></math></span> is integrable over the jump set (whose <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> measure is possibly infinite), for some continuous, nondecreasing, subadditive function <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, with <span><math><msubsup><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. The approximating functions <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are piecewise affine with piecewise affine jump set; the convergence is that of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> and the convergence in energy for <span><math><mo>|</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><mi>g</mi><mo>(</mo><mo>[</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>]</mo><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> for suitable functions <em>g</em>. In particular, <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> converges to <em>u BV</em>-strictly, area-strictly, and strongly in <em>BV</em> after composition with a bilipschitz map. If in addition <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>)</mo><mo>&lt;</mo><mo>∞</mo></math></span>, we also have convergence of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> to <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sobolev smoothing estimates for bilinear maximal operators with fractal dilation sets 具有分形扩张集的双线性最大算子的索波列夫平滑估计值
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2024-09-19 DOI: 10.1016/j.jfa.2024.110694
Tainara Borges , Benjamin Foster , Yumeng Ou
{"title":"Sobolev smoothing estimates for bilinear maximal operators with fractal dilation sets","authors":"Tainara Borges ,&nbsp;Benjamin Foster ,&nbsp;Yumeng Ou","doi":"10.1016/j.jfa.2024.110694","DOIUrl":"10.1016/j.jfa.2024.110694","url":null,"abstract":"<div><div>Given a hypersurface <span><math><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></msup></math></span>, we study the bilinear averaging operator that averages a pair of functions over <em>S</em>, as well as more general bilinear multipliers of limited decay and various maximal analogs. Of particular interest are bilinear maximal operators associated to a fractal dilation set <span><math><mi>E</mi><mo>⊂</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>; in this case, the boundedness region of the maximal operator is associated to the geometry of the hypersurface and various notions of the dimension of the dilation set. In particular, we determine Sobolev smoothing estimates at the exponent <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> using Fourier-analytic methods, which allow us to deduce additional <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> improving bounds for the operators and sparse bounds and their weighted corollaries for the associated multi-scale maximal functions. We also extend the method to study analogues of these questions for the triangle averaging operator and biparameter averaging operators. In addition, some necessary conditions for boundedness of these operators are obtained.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信