单侧Muckenhoupt权值和单侧弱多孔集

IF 1.7 2区 数学 Q1 MATHEMATICS
Hugo Aimar , Ivana Gómez , Ignacio Gómez Vargas , Francisco Javier Martín-Reyes
{"title":"单侧Muckenhoupt权值和单侧弱多孔集","authors":"Hugo Aimar ,&nbsp;Ivana Gómez ,&nbsp;Ignacio Gómez Vargas ,&nbsp;Francisco Javier Martín-Reyes","doi":"10.1016/j.jfa.2025.111110","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we introduce the geometric concept of one-sided weakly porous sets in the real line and show that a set <span><math><mi>E</mi><mo>⊂</mo><mi>R</mi></math></span> satisfies <span><math><mi>d</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>∈</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for some <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> if and only if <em>E</em> is right-sided weakly porous. Furthermore, we find that the property of being both left-sided and right-sided weakly porous is equivalent to the recent weakly porous condition discussed in the bibliography, which, in turn, was previously found to be intimately related to the usual class of Muckenhoupt weights <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111110"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-sided Muckenhoupt weights and one-sided weakly porous sets in R\",\"authors\":\"Hugo Aimar ,&nbsp;Ivana Gómez ,&nbsp;Ignacio Gómez Vargas ,&nbsp;Francisco Javier Martín-Reyes\",\"doi\":\"10.1016/j.jfa.2025.111110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we introduce the geometric concept of one-sided weakly porous sets in the real line and show that a set <span><math><mi>E</mi><mo>⊂</mo><mi>R</mi></math></span> satisfies <span><math><mi>d</mi><msup><mrow><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>∈</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>∩</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for some <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> if and only if <em>E</em> is right-sided weakly porous. Furthermore, we find that the property of being both left-sided and right-sided weakly porous is equivalent to the recent weakly porous condition discussed in the bibliography, which, in turn, was previously found to be intimately related to the usual class of Muckenhoupt weights <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 10\",\"pages\":\"Article 111110\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002927\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们在实线中引入了单侧弱多孔集的几何概念,并证明了一个集合E∧R满足d(⋅,E)−α∈A1+(R)∩Lloc1(R)当且仅当E是右侧弱多孔的。此外,我们发现左、右两侧弱多孔的性质与文献中讨论的最近的弱多孔条件是等价的,而后者又被先前发现与通常的Muckenhoupt权值A1类密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-sided Muckenhoupt weights and one-sided weakly porous sets in R
In this work, we introduce the geometric concept of one-sided weakly porous sets in the real line and show that a set ER satisfies d(,E)αA1+(R)Lloc1(R) for some α>0 if and only if E is right-sided weakly porous. Furthermore, we find that the property of being both left-sided and right-sided weakly porous is equivalent to the recent weakly porous condition discussed in the bibliography, which, in turn, was previously found to be intimately related to the usual class of Muckenhoupt weights A1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信