Limit formulas for norms of tensor power operators

IF 1.7 2区 数学 Q1 MATHEMATICS
Guillaume Aubrun , Alexander Müller-Hermes
{"title":"Limit formulas for norms of tensor power operators","authors":"Guillaume Aubrun ,&nbsp;Alexander Müller-Hermes","doi":"10.1016/j.jfa.2025.111113","DOIUrl":null,"url":null,"abstract":"<div><div>Given an operator <span><math><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> between Banach spaces, we consider its tensor powers <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> as operators from the <em>k</em>-fold injective tensor product of <em>X</em> to the <em>k</em>-fold projective tensor product of <em>Y</em>. We show that after taking the <em>k</em>th root, the operator norm of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> converges to the 2-dominated norm <span><math><msubsup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>, one of the standard operator ideal norms.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111113"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002952","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an operator ϕ:XY between Banach spaces, we consider its tensor powers ϕk as operators from the k-fold injective tensor product of X to the k-fold projective tensor product of Y. We show that after taking the kth root, the operator norm of ϕk converges to the 2-dominated norm γ2(ϕ), one of the standard operator ideal norms.
张量幂算子范数的极限公式
在Banach空间中给定一个算子φ:X→Y,我们把它的张量幂φ⊗k看作是从X的k折内射张量积到Y的k折射射张量积的算子。我们证明了在取k次根后,φ⊗k的算子范数收敛于标准算子理想范数之一的2支配范数γ2 (φ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信