Anderson localization for CMV matrices with Verblunsky coefficients defined by the hyperbolic toral automorphism

IF 1.7 2区 数学 Q1 MATHEMATICS
Yanxue Lin , Shuzheng Guo , Daxiong Piao
{"title":"Anderson localization for CMV matrices with Verblunsky coefficients defined by the hyperbolic toral automorphism","authors":"Yanxue Lin ,&nbsp;Shuzheng Guo ,&nbsp;Daxiong Piao","doi":"10.1016/j.jfa.2025.111103","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the large deviation estimates and Anderson localization for CMV matrices on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> with Verblunsky coefficients defined dynamically by the hyperbolic toral automorphism. Part of positivity results on the Lyapunov exponents of Chulaevsky-Spencer <span><span>[9]</span></span> and Anderson localization results of Bourgain-Schlag <span><span>[6]</span></span> on Schrödinger operators with strongly mixing potentials are extended to CMV matrices.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111103"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500285X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the large deviation estimates and Anderson localization for CMV matrices on 2(Z+) with Verblunsky coefficients defined dynamically by the hyperbolic toral automorphism. Part of positivity results on the Lyapunov exponents of Chulaevsky-Spencer [9] and Anderson localization results of Bourgain-Schlag [6] on Schrödinger operators with strongly mixing potentials are extended to CMV matrices.
由双曲总自同构定义的具有Verblunsky系数的CMV矩阵的Anderson定位
本文证明了由双曲总自同构动态定义的Verblunsky系数在2(Z+)上的CMV矩阵的大偏差估计和Anderson定位。将具有强混合势的Schrödinger算子上Chulaevsky-Spencer[9]的Lyapunov指数的部分正性结果和Bourgain-Schlag[6]的Anderson局部化结果推广到CMV矩阵上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信