{"title":"由双曲总自同构定义的具有Verblunsky系数的CMV矩阵的Anderson定位","authors":"Yanxue Lin , Shuzheng Guo , Daxiong Piao","doi":"10.1016/j.jfa.2025.111103","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the large deviation estimates and Anderson localization for CMV matrices on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> with Verblunsky coefficients defined dynamically by the hyperbolic toral automorphism. Part of positivity results on the Lyapunov exponents of Chulaevsky-Spencer <span><span>[9]</span></span> and Anderson localization results of Bourgain-Schlag <span><span>[6]</span></span> on Schrödinger operators with strongly mixing potentials are extended to CMV matrices.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111103"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anderson localization for CMV matrices with Verblunsky coefficients defined by the hyperbolic toral automorphism\",\"authors\":\"Yanxue Lin , Shuzheng Guo , Daxiong Piao\",\"doi\":\"10.1016/j.jfa.2025.111103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the large deviation estimates and Anderson localization for CMV matrices on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> with Verblunsky coefficients defined dynamically by the hyperbolic toral automorphism. Part of positivity results on the Lyapunov exponents of Chulaevsky-Spencer <span><span>[9]</span></span> and Anderson localization results of Bourgain-Schlag <span><span>[6]</span></span> on Schrödinger operators with strongly mixing potentials are extended to CMV matrices.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 9\",\"pages\":\"Article 111103\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500285X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500285X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Anderson localization for CMV matrices with Verblunsky coefficients defined by the hyperbolic toral automorphism
In this paper, we prove the large deviation estimates and Anderson localization for CMV matrices on with Verblunsky coefficients defined dynamically by the hyperbolic toral automorphism. Part of positivity results on the Lyapunov exponents of Chulaevsky-Spencer [9] and Anderson localization results of Bourgain-Schlag [6] on Schrödinger operators with strongly mixing potentials are extended to CMV matrices.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis