稳定IPM方程在H2中的不存在性和强病态性

IF 1.7 2区 数学 Q1 MATHEMATICS
Roberta Bianchini , Diego Córdoba , Luis Martínez-Zoroa
{"title":"稳定IPM方程在H2中的不存在性和强病态性","authors":"Roberta Bianchini ,&nbsp;Diego Córdoba ,&nbsp;Luis Martínez-Zoroa","doi":"10.1016/j.jfa.2025.111097","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the non-existence and strong ill-posedness of the Incompressible Porous Media (IPM) equation for initial data that are small <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> perturbations of the linearly stable profile <span><math><mo>−</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A remarkable novelty of the proof is the construction of an <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> perturbation, which solves the IPM equation and neutralizes the stabilizing effect of the background profile near the origin, where a strong deformation leading to non-existence in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is created. This strong deformation is achieved through an iterative procedure inspired by the work of Córdoba and Martínez-Zoroa (2022) <span><span>[7]</span></span>. However, several differences - beyond purely technical aspects - arise due to the anisotropic and, more importantly, to the partially dissipative nature of the equation, adding further challenges to the analysis.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111097"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non existence and strong ill-posedness in H2 for the stable IPM equation\",\"authors\":\"Roberta Bianchini ,&nbsp;Diego Córdoba ,&nbsp;Luis Martínez-Zoroa\",\"doi\":\"10.1016/j.jfa.2025.111097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove the non-existence and strong ill-posedness of the Incompressible Porous Media (IPM) equation for initial data that are small <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> perturbations of the linearly stable profile <span><math><mo>−</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. A remarkable novelty of the proof is the construction of an <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> perturbation, which solves the IPM equation and neutralizes the stabilizing effect of the background profile near the origin, where a strong deformation leading to non-existence in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is created. This strong deformation is achieved through an iterative procedure inspired by the work of Córdoba and Martínez-Zoroa (2022) <span><span>[7]</span></span>. However, several differences - beyond purely technical aspects - arise due to the anisotropic and, more importantly, to the partially dissipative nature of the equation, adding further challenges to the analysis.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 9\",\"pages\":\"Article 111097\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002794\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002794","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了不可压缩多孔介质(IPM)方程对于线性稳定剖面−x2的小H2(R2)扰动的初始数据的不存在性和强病态性。该证明的一个引人注目的新颖之处在于H2扰动的构建,它解决了IPM方程并中和了原点附近背景剖面的稳定效应,在原点附近产生了导致H2不存在的强烈变形。这种强烈的变形是通过Córdoba和Martínez-Zoroa(2022)[7]的工作启发的迭代过程实现的。然而,由于各向异性,更重要的是,由于方程的部分耗散性质,出现了一些差异-除了纯粹的技术方面-给分析增加了进一步的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non existence and strong ill-posedness in H2 for the stable IPM equation
We prove the non-existence and strong ill-posedness of the Incompressible Porous Media (IPM) equation for initial data that are small H2(R2) perturbations of the linearly stable profile x2. A remarkable novelty of the proof is the construction of an H2 perturbation, which solves the IPM equation and neutralizes the stabilizing effect of the background profile near the origin, where a strong deformation leading to non-existence in H2 is created. This strong deformation is achieved through an iterative procedure inspired by the work of Córdoba and Martínez-Zoroa (2022) [7]. However, several differences - beyond purely technical aspects - arise due to the anisotropic and, more importantly, to the partially dissipative nature of the equation, adding further challenges to the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信