{"title":"张量幂算子范数的极限公式","authors":"Guillaume Aubrun , Alexander Müller-Hermes","doi":"10.1016/j.jfa.2025.111113","DOIUrl":null,"url":null,"abstract":"<div><div>Given an operator <span><math><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> between Banach spaces, we consider its tensor powers <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> as operators from the <em>k</em>-fold injective tensor product of <em>X</em> to the <em>k</em>-fold projective tensor product of <em>Y</em>. We show that after taking the <em>k</em>th root, the operator norm of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> converges to the 2-dominated norm <span><math><msubsup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>, one of the standard operator ideal norms.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111113"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit formulas for norms of tensor power operators\",\"authors\":\"Guillaume Aubrun , Alexander Müller-Hermes\",\"doi\":\"10.1016/j.jfa.2025.111113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given an operator <span><math><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> between Banach spaces, we consider its tensor powers <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> as operators from the <em>k</em>-fold injective tensor product of <em>X</em> to the <em>k</em>-fold projective tensor product of <em>Y</em>. We show that after taking the <em>k</em>th root, the operator norm of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>⊗</mo><mi>k</mi></mrow></msup></math></span> converges to the 2-dominated norm <span><math><msubsup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>ϕ</mi><mo>)</mo></math></span>, one of the standard operator ideal norms.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 10\",\"pages\":\"Article 111113\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002952\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002952","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Limit formulas for norms of tensor power operators
Given an operator between Banach spaces, we consider its tensor powers as operators from the k-fold injective tensor product of X to the k-fold projective tensor product of Y. We show that after taking the kth root, the operator norm of converges to the 2-dominated norm , one of the standard operator ideal norms.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis