{"title":"Determination of quasilinear terms from restricted data and point measurements","authors":"Yavar Kian","doi":"10.1016/j.jfa.2024.110612","DOIUrl":"10.1016/j.jfa.2024.110612","url":null,"abstract":"<div><p>We study the inverse problem of determining uniquely and stably quasilinear terms appearing in an elliptic equation from boundary excitations and measurements associated with the solutions of the corresponding equation. More precisely, we consider the determination of quasilinear terms depending simultaneously on the solution and the gradient of the solution of the elliptic equation from measurements of the flux restricted to some fixed and finite number of points located at the boundary of the domain generated by Dirichlet data lying on a finite dimensional space. Our Dirichlet data will be explicitly given by affine functions taking values in <span><math><mi>R</mi></math></span>. We prove our results by considering a new approach based on explicit asymptotic properties of solutions of this class of nonlinear elliptic equations with respect to a small parameter imposed at the boundary of the domain.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-self-adjoint quasi-periodic operators with complex spectrum","authors":"Zhenfu Wang, Jiangong You, Qi Zhou","doi":"10.1016/j.jfa.2024.110614","DOIUrl":"10.1016/j.jfa.2024.110614","url":null,"abstract":"<div><p>We give a precise and complete description on the spectrum for a class of non-self-adjoint quasi-periodic operators acting on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> which contains the Sarnak's model as a special case. As a consequence, one can see various interesting spectral phenomena including <span><math><mi>P</mi><mi>T</mi></math></span> symmetric breaking, the non-simply-connected two-dimensional spectrum in this class of operators. Particularly, we provide new examples of non-self-adjoint operator in <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Z</mi><mo>)</mo></math></span> whose spectra (actually a two-dimensional subset of <span><math><mi>C</mi></math></span>) can not be approximated by the spectra of its finite-interval truncations.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localization of Beltrami fields: Global smooth solutions and vortex reconnection for the Navier-Stokes equations","authors":"Gennaro Ciampa , Renato Lucà","doi":"10.1016/j.jfa.2024.110610","DOIUrl":"10.1016/j.jfa.2024.110610","url":null,"abstract":"<div><p>We introduce a class of divergence-free vector fields on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> obtained after a suitable localization of <em>Beltrami fields</em>. First, we use them as initial data to construct unique global smooth solutions of the three dimensional Navier-Stokes equations. The relevant fact here is that these initial data can be chosen to be large in any critical space for the Navier–Stokes problem, however they satisfy the nonlinear smallness assumption introduced in <span><span>[10]</span></span>. As a further application of the method, we use these vector fields to provide analytical example of vortex-reconnection for the three-dimensional Navier-Stokes equations on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. To do so, we exploit the ideas developed in <span><span>[13]</span></span> but differently from this latter we cannot rely on the non-trivial homotopy of the three-dimensional torus. To overcome this obstacle we use a different topological invariant, i.e. the number of hyperbolic zeros of the vorticity field.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002982/pdfft?md5=bd4ea9dcf91041c5a984937fea1ce849&pid=1-s2.0-S0022123624002982-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the asymptotic behaviour of the fractional Sobolev seminorms: A geometric approach","authors":"Bang-Xian Han","doi":"10.1016/j.jfa.2024.110608","DOIUrl":"10.1016/j.jfa.2024.110608","url":null,"abstract":"<div><p>We study the well-known asymptotic formulas for fractional Sobolev functions à la Bourgain–Brezis–Mironescu and Maz'ya–Shaposhnikova, in a geometric approach. We show that the key to these asymptotic formulas are Rademacher's theorem and volume growth at infinity respectively. Examples fitting our framework includes Euclidean spaces, Riemannian manifolds, Alexandrov spaces, finite dimensional Banach spaces, and some ideal sub-Riemannian manifolds.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KPZ equation limit of sticky Brownian motion","authors":"Sayan Das , Hindy Drillick , Shalin Parekh","doi":"10.1016/j.jfa.2024.110609","DOIUrl":"10.1016/j.jfa.2024.110609","url":null,"abstract":"<div><p>We consider the motion of a particle under a continuum random environment whose distribution is given by the Howitt-Warren flow. In the moderate deviation regime, we establish that the quenched density of the motion of the particle (after appropriate centering and scaling) converges weakly to the <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>)</mo></math></span> dimensional stochastic heat equation driven by multiplicative space-time white noise. Our result confirms physics predictions and computations in <span><span>[66]</span></span>, <span><span>[7]</span></span> and is the first rigorous instance of such weak convergence in the moderate deviation regime. Our proof relies on a certain Girsanov transform and works for all Howitt-Warren flows with finite and nonzero characteristic measures. Our results capture universality in the sense that the limiting distribution depends on the flow only via the total mass of the characteristic measure. As a corollary of our results, we prove that the fluctuations of the maximum of an <em>N</em>-point sticky Brownian motion are given by the KPZ equation plus an independent Gumbel on timescales of order <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo></mo><mi>N</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yangkendi Deng , Chenjie Fan , Kailong Yang , Zehua Zhao , Jiqiang Zheng
{"title":"On bilinear Strichartz estimates on waveguides with applications","authors":"Yangkendi Deng , Chenjie Fan , Kailong Yang , Zehua Zhao , Jiqiang Zheng","doi":"10.1016/j.jfa.2024.110595","DOIUrl":"10.1016/j.jfa.2024.110595","url":null,"abstract":"<div><p>We study local-in-time and global-in-time bilinear Strichartz estimates for the Schrödinger equation on waveguides. As applications, we apply those estimates to study global well-posedness of nonlinear Schrödinger equations on these waveguides.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials","authors":"T. Borsoni , B. Lods","doi":"10.1016/j.jfa.2024.110599","DOIUrl":"10.1016/j.jfa.2024.110599","url":null,"abstract":"<div><p>We provide the first quantitative result of convergence to equilibrium in the context of the spatially homogeneous Boltzmann-Fermi-Dirac equation associated with hard potentials interactions under angular cut-off assumption, providing an explicit – algebraic – rate of convergence to Fermi-Dirac steady solutions. This result complements the quantitative convergence result of <span><span>[15]</span></span> and is based upon new uniform-in-time-and-<em>ε</em> <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> bound on the solutions.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002878/pdfft?md5=a9b3b994e8d50ed70d9aa61570d4cae9&pid=1-s2.0-S0022123624002878-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernando Albiac , José L. Ansorena , Miguel Berasategui
{"title":"Linear versus nonlinear forms of partial unconditionality of bases","authors":"Fernando Albiac , José L. Ansorena , Miguel Berasategui","doi":"10.1016/j.jfa.2024.110594","DOIUrl":"10.1016/j.jfa.2024.110594","url":null,"abstract":"<div><p>The main results in this paper contribute to bringing to the fore novel underlying connections between the contemporary concepts and methods springing from greedy approximation theory with the well-established techniques of classical Banach spaces. We do that by showing that bounded-oscillation unconditional bases, introduced by Dilworth et al. in 2009 in the setting of their search for extraction principles of subsequences verifying partial forms of unconditionality, are the same as truncation quasi-greedy bases, a new breed of bases that appear naturally in the study of the performance of the thresholding greedy algorithm in Banach spaces. We use this identification to provide examples of bases that exhibit that bounded-oscillation unconditionality is a stronger condition than Elton's near unconditionality. We also take advantage of our arguments to provide examples that allow us to tell apart certain types of bases that verify either debilitated unconditionality conditions or weaker forms of quasi-greediness in the context of abstract approximation theory.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002829/pdfft?md5=d1eaf1259e1f6e43185ebe7056350763&pid=1-s2.0-S0022123624002829-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the norm of the Hilbert matrix operator on weighted Bergman spaces","authors":"Jineng Dai","doi":"10.1016/j.jfa.2024.110587","DOIUrl":"10.1016/j.jfa.2024.110587","url":null,"abstract":"<div><p>It is known that the norm of the Hilbert matrix operator on weighted Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> was conjectured by Karapetrović to be <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mi>sin</mi><mo></mo><mfrac><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo><mi>π</mi></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></mfrac></math></span> when <span><math><mi>α</mi><mo>></mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>></mo><mi>α</mi><mo>+</mo><mn>2</mn></math></span>. The conjecture has been confirmed by Božin and Karapetrović in the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>. In this paper we prove the conjecture for the cases both <span><math><mi>α</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>47</mn></mrow></mfrac></math></span>. Moreover, we also show that the conjecture is valid when <span><math><mo>−</mo><mn>1</mn><mo><</mo><mi>α</mi><mo><</mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn><mo>(</mo><mi>α</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The L2 Aeppli-Bott-Chern Hilbert complex","authors":"Tom Holt , Riccardo Piovani","doi":"10.1016/j.jfa.2024.110596","DOIUrl":"10.1016/j.jfa.2024.110596","url":null,"abstract":"<div><p>We analyse the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Hilbert complexes naturally associated to a non-compact complex manifold, namely the ones which originate from the Dolbeault and the Aeppli-Bott-Chern complexes. In particular we define the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Aeppli-Bott-Chern Hilbert complex and examine its main properties on general Hermitian manifolds, on complete Kähler manifolds and on Galois coverings of compact complex manifolds. The main results are achieved through the study of self-adjoint extensions of various differential operators whose kernels, on compact Hermitian manifolds, are isomorphic to either Aeppli or Bott-Chern cohomology.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002842/pdfft?md5=fc2f4d3b51bf5120f24f9f01a7316a7b&pid=1-s2.0-S0022123624002842-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}