New solutions for the Lane-Emden problem in planar domains

IF 1.7 2区 数学 Q1 MATHEMATICS
Luca Battaglia , Isabella Ianni , Angela Pistoia
{"title":"New solutions for the Lane-Emden problem in planar domains","authors":"Luca Battaglia ,&nbsp;Isabella Ianni ,&nbsp;Angela Pistoia","doi":"10.1016/j.jfa.2025.110967","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Lane-Emden problem<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a smooth bounded domain. When the exponent <em>p</em> is large, the existence and multiplicity of solutions strongly depend on the geometric properties of the domain, which also deeply affect their qualitative behavior. Remarkably, a wide variety of solutions, both positive and sign-changing, have been found when <em>p</em> is sufficiently large. In this paper, we focus on this topic and find new sign-changing solutions that exhibit an unexpected concentration phenomenon as <em>p</em> approaches +∞.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 110967"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001491","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Lane-Emden problemΔu=|u|p1uinΩ,u=0onΩ, where ΩR2 is a smooth bounded domain. When the exponent p is large, the existence and multiplicity of solutions strongly depend on the geometric properties of the domain, which also deeply affect their qualitative behavior. Remarkably, a wide variety of solutions, both positive and sign-changing, have been found when p is sufficiently large. In this paper, we focus on this topic and find new sign-changing solutions that exhibit an unexpected concentration phenomenon as p approaches +∞.
平面域上Lane-Emden问题的新解
我们考虑Lane-Emden问题−Δu=|u|p−1uinΩ,u=0on∂Ω,其中Ω∧R2是光滑有界域。当指数p较大时,解的存在性和多重性强烈地依赖于定义域的几何性质,这也深刻地影响了它们的定性行为。值得注意的是,当p足够大时,已经找到了各种各样的解,包括正的和改变符号的。在本文中,我们专注于这个主题,并找到新的符号改变的解决方案,表现出意想不到的集中现象,当p接近+∞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信