非线性热流的积分Varadhan公式

IF 1.7 2区 数学 Q1 MATHEMATICS
Shin-ichi Ohta , Kohei Suzuki
{"title":"非线性热流的积分Varadhan公式","authors":"Shin-ichi Ohta ,&nbsp;Kohei Suzuki","doi":"10.1016/j.jfa.2025.110983","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the integral Varadhan short-time formula for non-linear heat flow on measured Finsler manifolds. To the best of the authors' knowledge, this is the first result establishing a Varadhan-type formula for non-linear semigroups. We do not assume the reversibility of the metric, thus the distance function can be asymmetric. In this generality, we reveal that the probabilistic interpretation is well-suited for our formula; the probability that a particle starting from a set <em>A</em> can be found in another set <em>B</em> describes the distance from <em>A</em> to <em>B</em>. One side of the estimates (the upper bound of the probability) is also established in the nonsmooth setting of infinitesimally strictly convex metric measure spaces.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 110983"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral Varadhan formula for non-linear heat flow\",\"authors\":\"Shin-ichi Ohta ,&nbsp;Kohei Suzuki\",\"doi\":\"10.1016/j.jfa.2025.110983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove the integral Varadhan short-time formula for non-linear heat flow on measured Finsler manifolds. To the best of the authors' knowledge, this is the first result establishing a Varadhan-type formula for non-linear semigroups. We do not assume the reversibility of the metric, thus the distance function can be asymmetric. In this generality, we reveal that the probabilistic interpretation is well-suited for our formula; the probability that a particle starting from a set <em>A</em> can be found in another set <em>B</em> describes the distance from <em>A</em> to <em>B</em>. One side of the estimates (the upper bound of the probability) is also established in the nonsmooth setting of infinitesimally strictly convex metric measure spaces.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 8\",\"pages\":\"Article 110983\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500165X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500165X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了测量的Finsler流形上非线性热流的积分Varadhan短时公式。据作者所知,这是建立非线性半群的varadhan型公式的第一个结果。我们不假设度量的可逆性,因此距离函数可以是不对称的。在这种一般性中,我们发现概率解释非常适合我们的公式;从集合a出发的粒子可以在另一个集合B中找到的概率描述了从a到B的距离。估计的一面(概率的上界)也在无穷小严格凸度量空间的非光滑设置中建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral Varadhan formula for non-linear heat flow
We prove the integral Varadhan short-time formula for non-linear heat flow on measured Finsler manifolds. To the best of the authors' knowledge, this is the first result establishing a Varadhan-type formula for non-linear semigroups. We do not assume the reversibility of the metric, thus the distance function can be asymmetric. In this generality, we reveal that the probabilistic interpretation is well-suited for our formula; the probability that a particle starting from a set A can be found in another set B describes the distance from A to B. One side of the estimates (the upper bound of the probability) is also established in the nonsmooth setting of infinitesimally strictly convex metric measure spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信