一类多未知数拟线性双曲方程的反问题

IF 1.7 2区 数学 Q1 MATHEMATICS
Yan Jiang , Hongyu Liu , Tianhao Ni , Kai Zhang
{"title":"一类多未知数拟线性双曲方程的反问题","authors":"Yan Jiang ,&nbsp;Hongyu Liu ,&nbsp;Tianhao Ni ,&nbsp;Kai Zhang","doi":"10.1016/j.jfa.2025.110986","DOIUrl":null,"url":null,"abstract":"<div><div>We propose and study several inverse boundary problems associated with a quasilinear hyperbolic equation of the form <span><math><mi>c</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>+</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> on a compact Riemannian manifold <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with boundary. We show that if <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is monomial and <span><math><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is analytic in <em>u</em>, then <span><math><mi>F</mi><mo>,</mo><mi>G</mi></math></span> and <em>c</em> as well as the associated initial data can be uniquely determined and reconstructed by the corresponding hyperbolic DtN (Dirichlet-to-Neumann) map. Our work leverages the construction of proper Gaussian beam solutions for quasilinear hyperbolic PDEs as well as their intriguing applications in conjunction with light-ray transforms and stationary phase techniques for related inverse problems. The results obtained are also of practical importance in assorted applications with nonlinear waves.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 110986"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse problems for a quasilinear hyperbolic equation with multiple unknowns\",\"authors\":\"Yan Jiang ,&nbsp;Hongyu Liu ,&nbsp;Tianhao Ni ,&nbsp;Kai Zhang\",\"doi\":\"10.1016/j.jfa.2025.110986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose and study several inverse boundary problems associated with a quasilinear hyperbolic equation of the form <span><math><mi>c</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>+</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> on a compact Riemannian manifold <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> with boundary. We show that if <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is monomial and <span><math><mi>G</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is analytic in <em>u</em>, then <span><math><mi>F</mi><mo>,</mo><mi>G</mi></math></span> and <em>c</em> as well as the associated initial data can be uniquely determined and reconstructed by the corresponding hyperbolic DtN (Dirichlet-to-Neumann) map. Our work leverages the construction of proper Gaussian beam solutions for quasilinear hyperbolic PDEs as well as their intriguing applications in conjunction with light-ray transforms and stationary phase techniques for related inverse problems. The results obtained are also of practical importance in assorted applications with nonlinear waves.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 7\",\"pages\":\"Article 110986\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001685\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001685","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在紧黎曼流形(M, G)上提出并研究了与具有边界的拟线性双曲方程c(x)−2∂t2u=Δg(u+F(x,u))+G(x,u)相关的几个反边界问题。我们证明了如果F(x,u)是单项式的,G (x,u)在u中是解析的,那么F,G和c以及相关的初始数据可以通过相应的双曲DtN (Dirichlet-to-Neumann)映射唯一地确定和重构。我们的工作利用了准线性双曲偏微分方程的适当高斯光束解的构造,以及它们与相关逆问题的光线变换和固定相位技术相结合的有趣应用。所得结果在非线性波的各种应用中也具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse problems for a quasilinear hyperbolic equation with multiple unknowns
We propose and study several inverse boundary problems associated with a quasilinear hyperbolic equation of the form c(x)2t2u=Δg(u+F(x,u))+G(x,u) on a compact Riemannian manifold (M,g) with boundary. We show that if F(x,u) is monomial and G(x,u) is analytic in u, then F,G and c as well as the associated initial data can be uniquely determined and reconstructed by the corresponding hyperbolic DtN (Dirichlet-to-Neumann) map. Our work leverages the construction of proper Gaussian beam solutions for quasilinear hyperbolic PDEs as well as their intriguing applications in conjunction with light-ray transforms and stationary phase techniques for related inverse problems. The results obtained are also of practical importance in assorted applications with nonlinear waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信