Connection Laplacian on discrete tori with converging property

IF 1.7 2区 数学 Q1 MATHEMATICS
Yong Lin, Shi Wan, Haohang Zhang
{"title":"Connection Laplacian on discrete tori with converging property","authors":"Yong Lin,&nbsp;Shi Wan,&nbsp;Haohang Zhang","doi":"10.1016/j.jfa.2025.110984","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive analysis of the spectral properties of the connection Laplacian for both real and discrete tori. We introduce novel methods to examine these eigenvalues by employing parallel orthonormal basis in the pullback bundle on universal covering spaces. Our main results reveal that the eigenvalues of the connection Laplacian on a real torus can be expressed in terms of standard Laplacian eigenvalues, with a unique twist encapsulated in the torsion matrix. This connection is further investigated in the context of discrete tori, where we demonstrate similar results.</div><div>A significant portion of the paper is dedicated to exploring the convergence properties of a family of discrete tori towards a real torus. We extend previous findings on the spectrum of the standard Laplacian to include the connection Laplacian, revealing that the rescaled eigenvalues of discrete tori converge to those of the real torus. Furthermore, our analysis of the discrete torus occurs within a broader context, where it is not constrained to being a product of cyclic groups. Additionally, we delve into the theta functions associated with these structures, providing a detailed analysis of their behavior and convergence.</div><div>The paper culminates in a study of the regularized log-determinant of the connection Laplacian and the converging results of it. We derive formulae for both real and discrete tori, emphasizing their dependence on the spectral zeta function and theta functions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110984"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001661","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive analysis of the spectral properties of the connection Laplacian for both real and discrete tori. We introduce novel methods to examine these eigenvalues by employing parallel orthonormal basis in the pullback bundle on universal covering spaces. Our main results reveal that the eigenvalues of the connection Laplacian on a real torus can be expressed in terms of standard Laplacian eigenvalues, with a unique twist encapsulated in the torsion matrix. This connection is further investigated in the context of discrete tori, where we demonstrate similar results.
A significant portion of the paper is dedicated to exploring the convergence properties of a family of discrete tori towards a real torus. We extend previous findings on the spectrum of the standard Laplacian to include the connection Laplacian, revealing that the rescaled eigenvalues of discrete tori converge to those of the real torus. Furthermore, our analysis of the discrete torus occurs within a broader context, where it is not constrained to being a product of cyclic groups. Additionally, we delve into the theta functions associated with these structures, providing a detailed analysis of their behavior and convergence.
The paper culminates in a study of the regularized log-determinant of the connection Laplacian and the converging results of it. We derive formulae for both real and discrete tori, emphasizing their dependence on the spectral zeta function and theta functions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信