Functional calculus on weighted Sobolev spaces for the Laplacian on the half-space

IF 1.7 2区 数学 Q1 MATHEMATICS
Nick Lindemulder , Emiel Lorist , Floris B. Roodenburg , Mark C. Veraar
{"title":"Functional calculus on weighted Sobolev spaces for the Laplacian on the half-space","authors":"Nick Lindemulder ,&nbsp;Emiel Lorist ,&nbsp;Floris B. Roodenburg ,&nbsp;Mark C. Veraar","doi":"10.1016/j.jfa.2025.110985","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the Laplace operator on the half-space with Dirichlet and Neumann boundary conditions. We prove that this operator admits a bounded <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-calculus on Sobolev spaces with power weights measuring the distance to the boundary. These weights do not necessarily belong to the class of Muckenhoupt <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> weights.</div><div>We additionally study the corresponding Dirichlet and Neumann heat semigroup. It is shown that these semigroups, in contrast to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-case, have polynomial growth. Moreover, maximal regularity results for the heat equation are derived on inhomogeneous and homogeneous weighted Sobolev spaces.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 110985"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001673","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the Laplace operator on the half-space with Dirichlet and Neumann boundary conditions. We prove that this operator admits a bounded H-calculus on Sobolev spaces with power weights measuring the distance to the boundary. These weights do not necessarily belong to the class of Muckenhoupt Ap weights.
We additionally study the corresponding Dirichlet and Neumann heat semigroup. It is shown that these semigroups, in contrast to the Lp-case, have polynomial growth. Moreover, maximal regularity results for the heat equation are derived on inhomogeneous and homogeneous weighted Sobolev spaces.
半空间上拉普拉斯算子加权Sobolev空间上的泛函演算
本文考虑了具有Dirichlet和Neumann边界条件的半空间上的拉普拉斯算子。我们证明了该算子在Sobolev空间上允许有界H∞-演算,幂权测量到边界的距离。这些权重不一定属于Muckenhoupt Ap权重类。我们还研究了相应的Dirichlet和Neumann热半群。结果表明,这些半群与lp情况不同,具有多项式增长。此外,在非齐次和齐次加权Sobolev空间上,导出了热方程的极大正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信