Journal of Functional Analysis最新文献

筛选
英文 中文
On the lack of selection for the transport equation over a dense set of vector fields 论密集矢量场集合上的输运方程缺乏选择性
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-19 DOI: 10.1016/j.jfa.2025.110942
Jules Pitcho
{"title":"On the lack of selection for the transport equation over a dense set of vector fields","authors":"Jules Pitcho","doi":"10.1016/j.jfa.2025.110942","DOIUrl":"10.1016/j.jfa.2025.110942","url":null,"abstract":"<div><div>We construct a set of bounded vector fields dense in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>;</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn></math></span> with <span><math><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mi>s</mi></math></span> for which smooth regularisation of the vector field does not give a selection criterion for the continuity equation, thereby showing that the two examples constructed in <span><span>[10]</span></span>, <span><span>[12]</span></span> are generic.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110942"},"PeriodicalIF":1.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classical solutions to the thin-film equation with general mobility in the perfect-wetting regime 完美润湿状态下具有一般迁移率的薄膜方程的经典解
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-19 DOI: 10.1016/j.jfa.2025.110941
Manuel V. Gnann, Anouk C. Wisse
{"title":"Classical solutions to the thin-film equation with general mobility in the perfect-wetting regime","authors":"Manuel V. Gnann,&nbsp;Anouk C. Wisse","doi":"10.1016/j.jfa.2025.110941","DOIUrl":"10.1016/j.jfa.2025.110941","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We prove well-posedness, partial regularity, and stability of the thin-film equation &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; with general mobility &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and mobility exponent &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in the regime of perfect wetting (zero contact angle). After a suitable coordinate transformation to fix the free boundary (the contact line where liquid, air, and solid coalesce), the thin-film equation is rewritten as an abstract Cauchy problem and we obtain maximal &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;-regularity for the linearized evolution. Partial regularity close to the free boundary is obtained by studying the elliptic regularity of the spatial part of the linearization. This yields solutions that are non-smooth in the distance to the free boundary, in line with previous findings for source-type self-similar solutions. In a scaling-wise quasi-minimal norm for the initial data, we obtain a well-posedness and asymptotic stability result for perturbations of traveling waves. The novelty of this work lies in the usage of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-estimates in time, where &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;∞&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, while the existing literature mostly deals with &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; at least for nonlinear mobilities. This turns out to be essential to obtain for the first time a well-posedness result in the perfect-wetting regime for all physical nonlinear slip conditions except for a strongly degenerate case at &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt; and the well-understood Greenspan-slip case &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. Furthermore, compared to &lt;span&gt;&lt;span&gt;[36]&lt;/span&gt;&lt;/span&gt; by Giacomelli, the first author of this paper, Knüpfer, and Otto, where a PDE approach yields &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;-estimates, well-posedness, and stability for &lt;span&gt;&lt;math&gt;&lt;mn&gt;1.8384&lt;/mn&gt;&lt;mo&gt;≈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;17&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mn&gt;21&lt;/mn&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 110941"},"PeriodicalIF":1.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143837981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A weighted decoupling inequality and its application to the maximal Bochner-Riesz problem 加权解耦不等式及其在极大Bochner-Riesz问题中的应用
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-19 DOI: 10.1016/j.jfa.2025.110943
Shengwen Gan , Shukun Wu
{"title":"A weighted decoupling inequality and its application to the maximal Bochner-Riesz problem","authors":"Shengwen Gan ,&nbsp;Shukun Wu","doi":"10.1016/j.jfa.2025.110943","DOIUrl":"10.1016/j.jfa.2025.110943","url":null,"abstract":"<div><div>We prove some weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-decoupling estimates when <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>/</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. As an application, we give a result beyond the real interpolation exponents for the maximal Bochner-Riesz operator in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We also make an improvement in the planar case.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 3","pages":"Article 110943"},"PeriodicalIF":1.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relaxation of the area of the vortex map: A non-parametric Plateau problem for a catenoid containing a segment 涡旋图面积的松弛:含段链状体的非参数高原问题
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-19 DOI: 10.1016/j.jfa.2025.110947
Giovanni Bellettini , Alaa Elshorbagy , Riccardo Scala
{"title":"Relaxation of the area of the vortex map: A non-parametric Plateau problem for a catenoid containing a segment","authors":"Giovanni Bellettini ,&nbsp;Alaa Elshorbagy ,&nbsp;Riccardo Scala","doi":"10.1016/j.jfa.2025.110947","DOIUrl":"10.1016/j.jfa.2025.110947","url":null,"abstract":"<div><div>Motivated by the study of the non-parametric area <span><math><mi>A</mi></math></span> of the graph of the vortex map <em>u</em> (a two-codimensional singular surface in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>) over the disk <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of radius <em>l</em>, we perform a careful analysis of the singular part of the relaxation of <span><math><mi>A</mi></math></span> computed at <em>u</em>. The precise description is given in terms of an area-minimizing surface in a vertical copy of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>, which is a sort of “catenoid” containing a segment corresponding to a radius of Ω. The problem involves an area-minimization with a free boundary part; several boundary regularity properties of the minimizer are inspected.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110947"},"PeriodicalIF":1.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some intrinsic differentiability properties for absolutely continuous functions between Carnot groups and the area formula 卡诺群间绝对连续函数的若干内在可微性及面积公式
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-19 DOI: 10.1016/j.jfa.2025.110948
Andrea Pinamonti, Francesco Serra Cassano, Kilian Zambanini
{"title":"On some intrinsic differentiability properties for absolutely continuous functions between Carnot groups and the area formula","authors":"Andrea Pinamonti,&nbsp;Francesco Serra Cassano,&nbsp;Kilian Zambanini","doi":"10.1016/j.jfa.2025.110948","DOIUrl":"10.1016/j.jfa.2025.110948","url":null,"abstract":"<div><div>We discuss <em>Q</em>-absolutely continuous functions between Carnot groups, following Malý's definition for maps of several variables (<span><span>[43]</span></span>). Such maps enjoy nice regularity properties, like continuity, Pansu differentiability a.e., weak differentiability and an area formula. Furthermore, we extend Stein's result concerning the sharp condition for continuity and differentiability a.e. of a Sobolev map in terms of the integrability of the weak gradient: more precisely, we prove that a Sobolev map between Carnot groups with horizontal gradient of its sections uniformly bounded in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>Q</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> admits a representative which is <em>Q</em>-absolutely continuous.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 3","pages":"Article 110948"},"PeriodicalIF":1.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential theory of Dirichlet forms with jump kernels blowing up at the boundary 边界处跳跃核爆炸的狄利克雷形式的势理论
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-18 DOI: 10.1016/j.jfa.2025.110934
Panki Kim , Renming Song , Zoran Vondraček
{"title":"Potential theory of Dirichlet forms with jump kernels blowing up at the boundary","authors":"Panki Kim ,&nbsp;Renming Song ,&nbsp;Zoran Vondraček","doi":"10.1016/j.jfa.2025.110934","DOIUrl":"10.1016/j.jfa.2025.110934","url":null,"abstract":"<div><div>In this paper we study the potential theory of Dirichlet forms on the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> defined by the jump kernel <span><math><mi>J</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and the killing potential <span><math><mi>κ</mi><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msubsup></math></span>, where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>B</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> can blow up to infinity at the boundary. The jump kernel and the killing potential depend on several parameters. For all admissible values of the parameters involved and all <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, we prove that the boundary Harnack principle holds, and establish sharp two-sided estimates on the Green functions of these processes.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110934"},"PeriodicalIF":1.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143759330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isoperimetric problem and structure at infinity on Alexandrov spaces with nonnegative curvature 非负曲率Alexandrov空间无穷远处的等周问题和结构
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-18 DOI: 10.1016/j.jfa.2025.110940
Gioacchino Antonelli , Marco Pozzetta
{"title":"Isoperimetric problem and structure at infinity on Alexandrov spaces with nonnegative curvature","authors":"Gioacchino Antonelli ,&nbsp;Marco Pozzetta","doi":"10.1016/j.jfa.2025.110940","DOIUrl":"10.1016/j.jfa.2025.110940","url":null,"abstract":"<div><div>In this paper we consider nonnegatively curved finite dimensional Alexandrov spaces with a non-collapsing condition, i.e., such that unit balls have volumes uniformly bounded from below away from zero. We study the relation between the isoperimetric profile, the existence of isoperimetric sets, and the asymptotic structure at infinity of such spaces.</div><div>In this setting, we prove that the following conditions are equivalent: the space has linear volume growth; it is Gromov–Hausdorff asymptotic to one cylinder at infinity; it has uniformly bounded isoperimetric profile; the entire space is a tubular neighborhood of either a line or a ray.</div><div>Moreover, on a space satisfying any of the previous conditions, we prove existence of isoperimetric sets for sufficiently large volumes, and we characterize the geometric rigidity at the level of the isoperimetric profile.</div><div>Specializing our study to the 2-dimensional case, we prove that unit balls have always volumes uniformly bounded from below away from zero, and we prove existence of isoperimetric sets for every volume, characterizing also their topology when the space has no boundary.</div><div>The proofs exploit a variational approach, and in particular apply to Riemannian manifolds with nonnegative sectional curvature and to Euclidean convex bodies. Up to the authors' knowledge, most of the results are new even in these smooth cases.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110940"},"PeriodicalIF":1.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagonals of self-adjoint operators I: Compact operators 自伴随算子I的对角线:紧算子
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-18 DOI: 10.1016/j.jfa.2025.110939
Marcin Bownik , John Jasper
{"title":"Diagonals of self-adjoint operators I: Compact operators","authors":"Marcin Bownik ,&nbsp;John Jasper","doi":"10.1016/j.jfa.2025.110939","DOIUrl":"10.1016/j.jfa.2025.110939","url":null,"abstract":"<div><div>Given a self-adjoint operator <em>T</em> on a separable infinite-dimensional Hilbert space we study the problem of characterizing the set <span><math><mi>D</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> of all possible diagonals of <em>T</em>. For compact operators <em>T</em>, we give a complete characterization of diagonals modulo the kernel of <em>T</em>. That is, we characterize <span><math><mi>D</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> for the class of operators sharing the same nonzero eigenvalues (with multiplicities) as <em>T</em>. Moreover, we determine <span><math><mi>D</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> for a fixed compact operator <em>T</em>, modulo the kernel problem for positive compact operators with finite-dimensional kernel.</div><div>Our results generalize a characterization of diagonals of trace class positive operators by Arveson and Kadison <span><span>[5]</span></span> and diagonals of compact positive operators by Kaftal and Weiss <span><span>[24]</span></span> and Loreaux and Weiss <span><span>[28]</span></span>. The proof uses the technique of diagonal-to-diagonal results, which was pioneered in the earlier joint work of the authors with Siudeja <span><span>[12]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110939"},"PeriodicalIF":1.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degenerate Kirchhoff problems with nonlinear Neumann boundary condition 具有非线性Neumann边界条件的退化Kirchhoff问题
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-18 DOI: 10.1016/j.jfa.2025.110933
Franziska Borer , Marcos T.O. Pimenta , Patrick Winkert
{"title":"Degenerate Kirchhoff problems with nonlinear Neumann boundary condition","authors":"Franziska Borer ,&nbsp;Marcos T.O. Pimenta ,&nbsp;Patrick Winkert","doi":"10.1016/j.jfa.2025.110933","DOIUrl":"10.1016/j.jfa.2025.110933","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper we consider degenerate Kirchhoff-type equations of the form&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ξ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;in &lt;/mtext&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ξ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;on &lt;/mtext&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, is a bounded domain with Lipschitz boundary ∂Ω, &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; denotes the double phase operator given by&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;div&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the outer unit normal of Ω at &lt;span&gt;&lt;math&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;,&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;Ξ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110933"},"PeriodicalIF":1.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143768202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Murray–von Neumann dimension for strictly semifinite weights 严格半有限权的Murray-von Neumann维数
IF 1.7 2区 数学
Journal of Functional Analysis Pub Date : 2025-03-18 DOI: 10.1016/j.jfa.2025.110938
Aldo Garcia Guinto, Matthew Lorentz, Brent Nelson
{"title":"Murray–von Neumann dimension for strictly semifinite weights","authors":"Aldo Garcia Guinto,&nbsp;Matthew Lorentz,&nbsp;Brent Nelson","doi":"10.1016/j.jfa.2025.110938","DOIUrl":"10.1016/j.jfa.2025.110938","url":null,"abstract":"<div><div>Given a von Neumann algebra <em>M</em> equipped with a faithful normal strictly semifinite weight <em>φ</em>, we develop a notion of Murray–von Neumann dimension over <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>φ</mi><mo>)</mo></math></span> that is defined for modules over the basic construction associated to the inclusion <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>φ</mi></mrow></msup><mo>⊂</mo><mi>M</mi></math></span>. For <span><math><mi>φ</mi><mo>=</mo><mi>τ</mi></math></span> a faithful normal tracial state, this recovers the usual Murray–von Neumann dimension for finite von Neumann algebras. If <em>M</em> is either a type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> factor with <span><math><mn>0</mn><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mn>1</mn></math></span> or a full type <span><math><msub><mrow><mi>III</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor with <span><math><mi>Sd</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>≠</mo><mi>R</mi></math></span>, then amongst extremal almost periodic weights the dimension function depends on <em>φ</em> only up to scaling. As an application, we show that if an inclusion of diffuse factors with separable preduals <span><math><mi>N</mi><mo>⊂</mo><mi>M</mi></math></span> is with expectation <span><math><mi>E</mi></math></span> and admits a compatible extremal almost periodic state <em>φ</em>, then this dimension quantity bounds the index <span><math><mi>Ind</mi><mspace></mspace><mi>E</mi></math></span>, and in fact equals it when the modular operators <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>φ</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>N</mi></mrow></msub></mrow></msub></math></span> have the same point spectrum. In the pursuit of this result, we also show such inclusions always admit Pimsner–Popa orthogonal bases.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110938"},"PeriodicalIF":1.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信