A sharp higher order Sobolev inequality on Riemannian manifolds

IF 1.7 2区 数学 Q1 MATHEMATICS
Samuel Zeitler
{"title":"A sharp higher order Sobolev inequality on Riemannian manifolds","authors":"Samuel Zeitler","doi":"10.1016/j.jfa.2025.111001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be integers such that <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>&gt;</mo><mi>m</mi><mo>≥</mo><mn>1</mn></math></span> and let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> be a closed <em>n</em>-dimensional Riemannian manifold. We prove there exists some <span><math><mi>B</mi><mo>∈</mo><mi>R</mi></math></span> depending only on <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>, <em>m</em>, and <em>n</em> such that for all <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>,<span><span><span><math><msubsup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><munder><mo>∫</mo><mrow><mi>M</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>+</mo><mi>B</mi><msubsup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span></span></span> where <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></mfrac></math></span>, <span><math><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> is the square of the best constant for the embedding <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>m</mi><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is the Sobolev space consisting of functions on <em>M</em> with <em>m</em> weak derivatives in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>=</mo><mi>∇</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> if <em>m</em> is odd. This inequality is sharp in the sense that <span><math><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> cannot be lowered to any smaller constant. This extends the work of Hebey-Vaugon <span><span>[11]</span></span> and Hebey <span><span>[10]</span></span> which correspond respectively to the cases <span><math><mi>m</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111001"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001831","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let m,n be integers such that n2>m1 and let (M,g) be a closed n-dimensional Riemannian manifold. We prove there exists some BR depending only on (M,g), m, and n such that for all uHm2(M),u2#2K(m,n)M(Δm2u)2dvg+BuHm12(M)2 where 2#=2nn2m, K(m,n) is the square of the best constant for the embedding Wm,2(Rn)L2#(Rn), Hm2(M) is the Sobolev space consisting of functions on M with m weak derivatives in L2(M), and Δm2=Δm12 if m is odd. This inequality is sharp in the sense that K(m,n) cannot be lowered to any smaller constant. This extends the work of Hebey-Vaugon [11] and Hebey [10] which correspond respectively to the cases m=1 and m=2.
黎曼流形上一个尖锐的高阶Sobolev不等式
设m,n为整数,使n2>;m≥1,设(m, g)为一个封闭的n维黎曼流形。我们证明存在一些只依赖于(M,g), M和n的B∈R,使得对于所有u∈Hm2(M),‖u‖2#2≤K(M, n)∫M(Δm2u)2dvg+B‖u‖Hm−12(M)2,其中2#=2nn−2m, K(M, n)是嵌入Wm的最佳常数的平方,2(Rn) L2#(Rn), Hm2(M)是由L2(M)中有M个弱导数的函数在M上组成的Sobolev空间,如果M是奇数则Δm2=∇Δm−12。这个不等式是尖锐的,因为K(m,n)不能降低到任何更小的常数。这扩展了Hebey- vaugon[11]和Hebey[10]分别对应于m=1和m=2的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信