{"title":"A sharp higher order Sobolev inequality on Riemannian manifolds","authors":"Samuel Zeitler","doi":"10.1016/j.jfa.2025.111001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be integers such that <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>></mo><mi>m</mi><mo>≥</mo><mn>1</mn></math></span> and let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> be a closed <em>n</em>-dimensional Riemannian manifold. We prove there exists some <span><math><mi>B</mi><mo>∈</mo><mi>R</mi></math></span> depending only on <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>, <em>m</em>, and <em>n</em> such that for all <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>,<span><span><span><math><msubsup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo><munder><mo>∫</mo><mrow><mi>M</mi></mrow></munder><msup><mrow><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>+</mo><mi>B</mi><msubsup><mrow><mo>‖</mo><mi>u</mi><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span></span></span> where <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></mfrac></math></span>, <span><math><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> is the square of the best constant for the embedding <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>m</mi><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>#</mi></mrow></msup></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> is the Sobolev space consisting of functions on <em>M</em> with <em>m</em> weak derivatives in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>=</mo><mi>∇</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mfrac><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> if <em>m</em> is odd. This inequality is sharp in the sense that <span><math><mi>K</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> cannot be lowered to any smaller constant. This extends the work of Hebey-Vaugon <span><span>[11]</span></span> and Hebey <span><span>[10]</span></span> which correspond respectively to the cases <span><math><mi>m</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111001"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001831","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be integers such that and let be a closed n-dimensional Riemannian manifold. We prove there exists some depending only on , m, and n such that for all , where , is the square of the best constant for the embedding , is the Sobolev space consisting of functions on M with m weak derivatives in , and if m is odd. This inequality is sharp in the sense that cannot be lowered to any smaller constant. This extends the work of Hebey-Vaugon [11] and Hebey [10] which correspond respectively to the cases and .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis