具有Ln数据的退化全非线性椭圆方程的内部W2、δ型估计

IF 1.7 2区 数学 Q1 MATHEMATICS
Sun-Sig Byun , Hongsoo Kim , Jehan Oh
{"title":"具有Ln数据的退化全非线性椭圆方程的内部W2、δ型估计","authors":"Sun-Sig Byun ,&nbsp;Hongsoo Kim ,&nbsp;Jehan Oh","doi":"10.1016/j.jfa.2025.111007","DOIUrl":null,"url":null,"abstract":"<div><div>We establish interior <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>δ</mi></mrow></msup></math></span> type estimates for a class of degenerate fully nonlinear elliptic equations with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> data. The main idea of our approach is to slide <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems, as discussed in <span><span>[6]</span></span>, <span><span>[16]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111007"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interior W2,δ type estimates for degenerate fully nonlinear elliptic equations with Ln data\",\"authors\":\"Sun-Sig Byun ,&nbsp;Hongsoo Kim ,&nbsp;Jehan Oh\",\"doi\":\"10.1016/j.jfa.2025.111007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish interior <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>δ</mi></mrow></msup></math></span> type estimates for a class of degenerate fully nonlinear elliptic equations with <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> data. The main idea of our approach is to slide <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems, as discussed in <span><span>[6]</span></span>, <span><span>[16]</span></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 111007\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001892\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001892","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一类具有Ln数据的退化全非线性椭圆方程的内W2,δ型估计。我们的方法的主要思想是滑动C1,α锥,而不是抛物面,垂直接触解,并根据顶点集的度量来估计接触集。这表明解几乎处处都有正切C1和α锥,这就得到了期望的Hessian估计。因此,我们能够发展一种与[6],[16]中讨论的发散结构拟线性椭圆问题的估计相对应的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interior W2,δ type estimates for degenerate fully nonlinear elliptic equations with Ln data
We establish interior W2,δ type estimates for a class of degenerate fully nonlinear elliptic equations with Ln data. The main idea of our approach is to slide C1,α cones, instead of paraboloids, vertically to touch the solution, and estimate the contact set in terms of the measure of the vertex set. This shows that the solution has tangent C1,α cones almost everywhere, which leads to the desired Hessian estimates. Accordingly, we are able to develop a kind of counterpart to the estimates for divergent structure quasilinear elliptic problems, as discussed in [6], [16].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信