圆盘上不可压缩欧拉方程的一类精确解的稳定性

IF 1.7 2区 数学 Q1 MATHEMATICS
Guodong Wang
{"title":"圆盘上不可压缩欧拉方程的一类精确解的稳定性","authors":"Guodong Wang","doi":"10.1016/j.jfa.2025.110998","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a sharp orbital stability result for a class of exact steady solutions, expressed in terms of Bessel functions of the first kind, of the two-dimensional incompressible Euler equation in a disk. A special case of these solutions is the truncated Lamb dipole, whose stream function corresponds to the second eigenfunction of the Dirichlet Laplacian. The proof is achieved by establishing a suitable variational characterization for these solutions via conserved quantities of the Euler equation and employing a compactness argument.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110998"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of a class of exact solutions of the incompressible Euler equation in a disk\",\"authors\":\"Guodong Wang\",\"doi\":\"10.1016/j.jfa.2025.110998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a sharp orbital stability result for a class of exact steady solutions, expressed in terms of Bessel functions of the first kind, of the two-dimensional incompressible Euler equation in a disk. A special case of these solutions is the truncated Lamb dipole, whose stream function corresponds to the second eigenfunction of the Dirichlet Laplacian. The proof is achieved by establishing a suitable variational characterization for these solutions via conserved quantities of the Euler equation and employing a compactness argument.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 5\",\"pages\":\"Article 110998\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001806\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001806","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了圆盘上二维不可压缩欧拉方程的一类用第一类贝塞尔函数表示的精确稳定解的尖锐轨道稳定性结果。这些解的一个特例是截断的兰姆偶极子,它的流函数对应于狄利克雷拉普拉斯函数的第二个特征函数。通过欧拉方程的守恒量和紧性论证,为这些解建立了合适的变分表征,从而实现了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of a class of exact solutions of the incompressible Euler equation in a disk
We prove a sharp orbital stability result for a class of exact steady solutions, expressed in terms of Bessel functions of the first kind, of the two-dimensional incompressible Euler equation in a disk. A special case of these solutions is the truncated Lamb dipole, whose stream function corresponds to the second eigenfunction of the Dirichlet Laplacian. The proof is achieved by establishing a suitable variational characterization for these solutions via conserved quantities of the Euler equation and employing a compactness argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信