关于形而上学变换的不确定性原理

IF 1.7 2区 数学 Q1 MATHEMATICS
Nicolas Lerner
{"title":"关于形而上学变换的不确定性原理","authors":"Nicolas Lerner","doi":"10.1016/j.jfa.2025.110997","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with a version of the Uncertainty Principle applied to operators in the Metaplectic group, the two-fold cover of the symplectic group. We calculate explicitly the sharp lowerbound occurring in our formulation: we provide a sharp lowerbound for the product of variances of <em>Mu</em> and of <em>u</em> for a function <em>u</em> normalized in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <em>M</em> a metaplectic transformation. The proofs are based upon the symplectic covariance of the Weyl calculus as well as upon some structural facts about the generators of the metaplectic group. We found some motivations in the new proofs and extensions of the Heisenberg Uncertainty Principle introduced by A. Widgerson &amp; Y. Widgerson in <span><span>[28]</span></span>, developed in <span><span>[7]</span></span> by N.C. Dias, F. Luef and J.N. Prata and also in <span><span>[24]</span></span>, <span><span>[25]</span></span> by Y. Tang.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 5","pages":"Article 110997"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the uncertainty principle for metaplectic transformations\",\"authors\":\"Nicolas Lerner\",\"doi\":\"10.1016/j.jfa.2025.110997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with a version of the Uncertainty Principle applied to operators in the Metaplectic group, the two-fold cover of the symplectic group. We calculate explicitly the sharp lowerbound occurring in our formulation: we provide a sharp lowerbound for the product of variances of <em>Mu</em> and of <em>u</em> for a function <em>u</em> normalized in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and <em>M</em> a metaplectic transformation. The proofs are based upon the symplectic covariance of the Weyl calculus as well as upon some structural facts about the generators of the metaplectic group. We found some motivations in the new proofs and extensions of the Heisenberg Uncertainty Principle introduced by A. Widgerson &amp; Y. Widgerson in <span><span>[28]</span></span>, developed in <span><span>[7]</span></span> by N.C. Dias, F. Luef and J.N. Prata and also in <span><span>[24]</span></span>, <span><span>[25]</span></span> by Y. Tang.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 5\",\"pages\":\"Article 110997\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500179X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500179X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文论述的是不确定性原理的一个版本,它适用于元胞群(交映群的二重覆盖)中的算子。我们明确地计算了在我们的公式中出现的尖锐下界:对于在 L2(Rn)中归一化的函数 u 和元映射变换 M,我们提供了 Mu 和 u 的方差乘积的尖锐下界。证明基于韦尔微积分的交映协方差,以及关于元映射组生成器的一些结构性事实。我们在 A. Widgerson & Y. Widgerson 在[28]中提出的海森堡不确定性原理的新证明和扩展中找到了一些动机,N.C. Dias、F. Luef 和 J.N. Prata 在[7]中对其进行了发展,Y. Tang 在[24]和[25]中也对其进行了发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the uncertainty principle for metaplectic transformations
This paper deals with a version of the Uncertainty Principle applied to operators in the Metaplectic group, the two-fold cover of the symplectic group. We calculate explicitly the sharp lowerbound occurring in our formulation: we provide a sharp lowerbound for the product of variances of Mu and of u for a function u normalized in L2(Rn) and M a metaplectic transformation. The proofs are based upon the symplectic covariance of the Weyl calculus as well as upon some structural facts about the generators of the metaplectic group. We found some motivations in the new proofs and extensions of the Heisenberg Uncertainty Principle introduced by A. Widgerson & Y. Widgerson in [28], developed in [7] by N.C. Dias, F. Luef and J.N. Prata and also in [24], [25] by Y. Tang.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信