A Harnack type inequality for singular Liouville type equations

IF 1.7 2区 数学 Q1 MATHEMATICS
Paolo Cosentino
{"title":"A Harnack type inequality for singular Liouville type equations","authors":"Paolo Cosentino","doi":"10.1016/j.jfa.2025.111003","DOIUrl":null,"url":null,"abstract":"<div><div>We obtain a Harnack type inequality for solutions of the Liouville type equation,<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mi>α</mi></mrow></msup><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></math></span></span></span> where <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <em>K</em> satisfies,<span><span><span><math><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>≤</mo><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>b</mi><mo>&lt;</mo><mo>+</mo><mo>∞</mo><mo>.</mo></math></span></span></span> This is a generalization to the singular case of a result by Chen and Lin (1998) <span><span>[12]</span></span>, which considered the regular case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span>.</div><div>Part of the argument of Chen-Lin can be adapted to the singular case by means of an isoperimetric inequality for surfaces with conical singularities. However, the case <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span> turns out to be more delicate, due to the lack of translation invariance of the singular problem, which requires a different approach.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111003"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001855","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a Harnack type inequality for solutions of the Liouville type equation,Δu=|x|2αK(x)euinΩ, where α(1,0), Ω is a bounded domain in R2 and K satisfies,0<aK(x)b<+. This is a generalization to the singular case of a result by Chen and Lin (1998) [12], which considered the regular case α=0.
Part of the argument of Chen-Lin can be adapted to the singular case by means of an isoperimetric inequality for surfaces with conical singularities. However, the case α(1,0) turns out to be more delicate, due to the lack of translation invariance of the singular problem, which requires a different approach.
奇异Liouville型方程的一个Harnack型不等式
我们得到了Liouville型方程-Δu=|x|2αK(x)euinΩ解的哈纳克不等式,其中α∈(-1,0),Ω是R2中的有界域,K满足,0<a≤K(x)≤b<+∞。这是陈和林(1998)[12] 的结果在奇异情况下的推广,该结果考虑了常规情况 α=0。陈和林的部分论证可以通过圆锥奇点曲面的等周不等式适用于奇异情况。然而,由于奇异问题缺乏平移不变性,α∈(-1,0) 的情况变得更加微妙,需要采用不同的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信