解析流形中调和球的低能级

IF 1.7 2区 数学 Q1 MATHEMATICS
Melanie Rupflin
{"title":"解析流形中调和球的低能级","authors":"Melanie Rupflin","doi":"10.1016/j.jfa.2025.111006","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the energy spectrum <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of harmonic maps from the sphere into a closed Riemannian manifold <em>N</em>. While a well known conjecture asserts that <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is discrete whenever <em>N</em> is analytic, for most analytic targets it is only known that any potential accumulation point of the energy spectrum must be given by the sum of the energies of at least two harmonic spheres. The lowest energy level that could hence potentially be an accumulation point of <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> is thus <span><math><mn>2</mn><msub><mrow><mi>E</mi></mrow><mrow><mtext>min</mtext></mrow></msub></math></span>. In the present paper we exclude this possibility for generic 3 manifolds and prove additional results that establish obstructions to the gluing of harmonic spheres and provide Łojasiewicz-estimates for almost harmonic maps.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 111006"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low energy levels of harmonic spheres in analytic manifolds\",\"authors\":\"Melanie Rupflin\",\"doi\":\"10.1016/j.jfa.2025.111006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the energy spectrum <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of harmonic maps from the sphere into a closed Riemannian manifold <em>N</em>. While a well known conjecture asserts that <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is discrete whenever <em>N</em> is analytic, for most analytic targets it is only known that any potential accumulation point of the energy spectrum must be given by the sum of the energies of at least two harmonic spheres. The lowest energy level that could hence potentially be an accumulation point of <span><math><msub><mrow><mi>Ξ</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> is thus <span><math><mn>2</mn><msub><mrow><mi>E</mi></mrow><mrow><mtext>min</mtext></mrow></msub></math></span>. In the present paper we exclude this possibility for generic 3 manifolds and prove additional results that establish obstructions to the gluing of harmonic spheres and provide Łojasiewicz-estimates for almost harmonic maps.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 6\",\"pages\":\"Article 111006\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001880\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001880","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑从球体到封闭黎曼流形N的调和映射的能谱ΞE(N)。虽然一个众所周知的猜想断言ΞE(N)是离散的,只要N是解析的,对于大多数解析目标,我们只知道能谱的任何潜在累加点必须由至少两个调和球体的能量之和给出。因此,可能成为ΞE蓄积点的最低能级是2Emin。在本文中,我们排除了一般3流形的这种可能性,并证明了建立调和球胶合障碍的附加结果,并提供了近似调和映射的Łojasiewicz-estimates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low energy levels of harmonic spheres in analytic manifolds
We consider the energy spectrum ΞE(N) of harmonic maps from the sphere into a closed Riemannian manifold N. While a well known conjecture asserts that ΞE(N) is discrete whenever N is analytic, for most analytic targets it is only known that any potential accumulation point of the energy spectrum must be given by the sum of the energies of at least two harmonic spheres. The lowest energy level that could hence potentially be an accumulation point of ΞE is thus 2Emin. In the present paper we exclude this possibility for generic 3 manifolds and prove additional results that establish obstructions to the gluing of harmonic spheres and provide Łojasiewicz-estimates for almost harmonic maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信