{"title":"Global wellposedness of general nonlinear evolution equations for distributions on the Fourier half space","authors":"Kenji Nakanishi , Baoxiang Wang","doi":"10.1016/j.jfa.2025.111004","DOIUrl":null,"url":null,"abstract":"<div><div>The Cauchy problem is studied for very general systems of evolution equations, where the time derivative of solution is written by Fourier multipliers in space and analytic nonlinearity, with no other structural requirement. We construct a function space for the Fourier transform embedded in the space of distributions, and establish the global wellposedness with no size restriction. The major restriction on the initial data is that the Fourier transform is supported on the half space, decaying at the boundary in the sense of measure. We also require uniform integrability for the orthogonal directions in the distribution sense, but no other condition. In particular, the initial data may be much more rough than the tempered distributions, and may grow polynomially at the spatial infinity. A simpler argument is also presented for the solutions locally integrable in the frequency. When the Fourier support is slightly more restricted to a conical region, the generality of equations is extremely wide, including those that are even locally illposed in the standard function spaces, such as the backward heat equations, as well as those with infinite derivatives and beyond the natural boundary of the analytic nonlinearity. As more classical examples, our results may be applied to the incompressible and compressible Navier-Stokes and Euler equations, the nonlinear diffusion and wave equations, and so on. In particular, the wellposedness includes uniqueness of very weak solution for those equations, under the Fourier support condition, but with no restriction on regularity or size of solutions. The major drawback of the Fourier support restriction is that the solutions cannot be real valued.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111004"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001867","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Cauchy problem is studied for very general systems of evolution equations, where the time derivative of solution is written by Fourier multipliers in space and analytic nonlinearity, with no other structural requirement. We construct a function space for the Fourier transform embedded in the space of distributions, and establish the global wellposedness with no size restriction. The major restriction on the initial data is that the Fourier transform is supported on the half space, decaying at the boundary in the sense of measure. We also require uniform integrability for the orthogonal directions in the distribution sense, but no other condition. In particular, the initial data may be much more rough than the tempered distributions, and may grow polynomially at the spatial infinity. A simpler argument is also presented for the solutions locally integrable in the frequency. When the Fourier support is slightly more restricted to a conical region, the generality of equations is extremely wide, including those that are even locally illposed in the standard function spaces, such as the backward heat equations, as well as those with infinite derivatives and beyond the natural boundary of the analytic nonlinearity. As more classical examples, our results may be applied to the incompressible and compressible Navier-Stokes and Euler equations, the nonlinear diffusion and wave equations, and so on. In particular, the wellposedness includes uniqueness of very weak solution for those equations, under the Fourier support condition, but with no restriction on regularity or size of solutions. The major drawback of the Fourier support restriction is that the solutions cannot be real valued.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis