{"title":"Wave front sets of nilpotent Lie group representations","authors":"Julia Budde, Tobias Weich","doi":"10.1016/j.jfa.2024.110684","DOIUrl":"10.1016/j.jfa.2024.110684","url":null,"abstract":"<div><div>Let <em>G</em> be a nilpotent, connected, simply connected Lie group with Lie algebra <span><math><mi>g</mi></math></span>, and <em>π</em> a unitary representation of <em>G</em>. In this article we prove that the wave front set of <em>π</em> coincides with the asymptotic cone of the orbital support of <em>π</em>, i.e. <span><math><mrow><mi>WF</mi></mrow><mo>(</mo><mi>π</mi><mo>)</mo><mo>=</mo><mrow><mi>AC</mi></mrow><mo>(</mo><msub><mrow><mo>⋃</mo></mrow><mrow><mi>σ</mi><mo>∈</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>⊂</mo><mi>i</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the coadjoint Kirillov orbit associated to the irreducible unitary representation <span><math><mi>σ</mi><mo>∈</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110684"},"PeriodicalIF":1.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003720/pdfft?md5=83be36def1c70aa00f9f837a0f297c17&pid=1-s2.0-S0022123624003720-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Absolute continuity of degenerate elliptic measure","authors":"Mingming Cao , Kôzô Yabuta","doi":"10.1016/j.jfa.2024.110673","DOIUrl":"10.1016/j.jfa.2024.110673","url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be an open set whose boundary may be composed of pieces of different dimensions. Assume that Ω satisfies the quantitative openness and connectedness, and there exist doubling measures <em>m</em> on Ω and <em>μ</em> on ∂Ω with appropriate size conditions. Let <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mo>−</mo><mi>div</mi><mo>(</mo><mi>A</mi><mi>∇</mi><mi>u</mi><mo>)</mo></math></span> be a real (not necessarily symmetric) degenerate elliptic operator in Ω. Write <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> for the associated degenerate elliptic measure. We establish the equivalence between the following properties: (i) <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>, (ii) the Dirichlet problem for <em>L</em> is solvable in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> for some <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, (iii) every bounded null solution of <em>L</em> satisfies Carleson measure estimates with respect to <em>μ</em>, (iv) the conical square function is controlled by the non-tangential maximal function in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> for all <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> for any null solution of <em>L</em>, and (v) the Dirichlet problem for <em>L</em> is solvable in <span><math><mi>BMO</mi><mo>(</mo><mi>μ</mi><mo>)</mo></math></span>. On the other hand, we obtain a qualitative analogy of the previous equivalence. Indeed, we characterize the absolute continuity of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> with respect to <em>μ</em> in terms of local <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo></math></span> estimates of the truncated conical square function for any bounded null solution of <em>L</em>. This is also equivalent to the finiteness <em>μ</em>-almost everywhere of the truncated conical square function for any bounded null solution of <em>L</em>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110673"},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003616/pdfft?md5=768991f70c40bd283f96e3c4b9cba196&pid=1-s2.0-S0022123624003616-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decay estimates for Beam equations with potential in dimension three","authors":"Miao Chen , Ping Li , Avy Soffer , Xiaohua Yao","doi":"10.1016/j.jfa.2024.110671","DOIUrl":"10.1016/j.jfa.2024.110671","url":null,"abstract":"<div><p>This paper is devoted to studying time decay estimates of the solution for Beam equation (higher order type wave equation) with a potential<span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mo>(</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi><mo>)</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span></span></span> in dimension three, where <em>V</em> is a real-valued and decaying potential. Assume that zero is a regular point of <span><math><mi>H</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span>, we first prove the following optimal time decay estimates of the solution operators<span><span><span><math><msub><mrow><mo>‖</mo><mi>cos</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>≲</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mspace></mspace><mtext>and</mtext><msub><mrow><mo>‖</mo><mfrac><mrow><mi>sin</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></mrow><mrow><msqrt><mrow><mi>H</mi></mrow></msqrt></mrow></mfrac><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub><mo>≲</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>.</mo></math></span></span></span> Moreover, if zero is a resonance of <em>H</em>, then time decay of the solution operators also is considered. It is noted that a first-kind resonance does not affect the decay rates of the propagator operators <span><math><mi>cos</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></math></span> and <span><math><mfrac><mrow><mi>sin</mi><mo></mo><mo>(</mo><mi>t</mi><msqrt><mrow><mi>H</mi></mrow></msqrt><mo>)</mo></mrow><mrow><msqrt><mrow><mi>H</mi></mrow></msqrt></mrow></mfrac></math></span>, but their decay will be significantly changed for the second and third-kind resonances.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110671"},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivalence of block sequences in Schreier spaces and their duals","authors":"R.M. Causey, A. Pelczar-Barwacz","doi":"10.1016/j.jfa.2024.110674","DOIUrl":"10.1016/j.jfa.2024.110674","url":null,"abstract":"<div><p>We prove that any normalized block sequence in a Schreier space <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>ξ</mi></mrow></msub></math></span>, of arbitrary order <span><math><mi>ξ</mi><mo><</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, admits a subsequence equivalent to a subsequence of the canonical basis of some Schreier space. The analogous result is proved for dual spaces to Schreier spaces. Using these results, we examine the structure of strictly singular operators on Schreier spaces and show that there are <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>c</mi></mrow></msup></math></span> many closed operator ideals on a Schreier space of any order, its dual and bidual space.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110674"},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josep M. Gallegos , Mihalis Mourgoglou , Xavier Tolsa
{"title":"Extrapolation of solvability of the regularity and the Poisson regularity problems in rough domains","authors":"Josep M. Gallegos , Mihalis Mourgoglou , Xavier Tolsa","doi":"10.1016/j.jfa.2024.110672","DOIUrl":"10.1016/j.jfa.2024.110672","url":null,"abstract":"<div><p>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, be an open set satisfying the corkscrew condition with <em>n</em>-Ahlfors regular boundary ∂Ω, but without any connectivity assumption. We study the connection between solvability of the regularity problem for divergence form elliptic operators with boundary data in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> and the weak-<span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> property of the associated elliptic measure. In particular, we show that solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to the solvability of the regularity problem in <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> for some <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>. We also prove analogous extrapolation results for the Poisson regularity problem defined on tent spaces. Moreover, under the hypothesis that ∂Ω supports a weak <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>-Poincaré inequality, we show that the solvability of the regularity problem in the Hajłasz-Sobolev space <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><mi>Ω</mi><mo>)</mo></math></span> is equivalent to a stronger solvability in a Hardy-Sobolev space of tangential derivatives.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110672"},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003604/pdfft?md5=559d2fce88142d22708d8e9a462e2ff0&pid=1-s2.0-S0022123624003604-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relative K-homology of higher-order differential operators","authors":"Magnus Fries","doi":"10.1016/j.jfa.2024.110678","DOIUrl":"10.1016/j.jfa.2024.110678","url":null,"abstract":"<div><p>We extend the notion of a spectral triple to that of a higher-order relative spectral triple, which accommodates several types of hypoelliptic differential operators on manifolds with boundary. The bounded transform of a higher-order relative spectral triple gives rise to a relative <em>K</em>-homology cycle. In the case of an elliptic differential operator on a compact smooth manifold with boundary, we calculate the <em>K</em>-homology boundary map of the constructed relative <em>K</em>-homology cycle to obtain a generalization of the Baum-Douglas-Taylor index theorem.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110678"},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003665/pdfft?md5=e36d9b99bb0991b52d9d9a26d8663803&pid=1-s2.0-S0022123624003665-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radiation of the energy-critical wave equation with compact support","authors":"Zhen Lei , Xiao Ren , Zhaojie Yang","doi":"10.1016/j.jfa.2024.110670","DOIUrl":"10.1016/j.jfa.2024.110670","url":null,"abstract":"<div><p>We prove exterior energy lower bounds for (nonradial) solutions to the energy-critical nonlinear wave equation in space dimensions <span><math><mn>3</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>5</mn></math></span>, with compactly supported initial data. In particular, it is shown that nontrivial global solutions with compact spatial support must be radiative in a sharp sense. In space dimensions 3 and 4, a nontrivial soliton background is also considered. As an application, we obtain partial results on the rigidity conjecture concerning solutions with the compactness property, including a new proof for the global existence of such solutions.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110670"},"PeriodicalIF":1.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Embedding C⁎-algebras into the Calkin algebra of ℓp","authors":"March T. Boedihardjo","doi":"10.1016/j.jfa.2024.110669","DOIUrl":"10.1016/j.jfa.2024.110669","url":null,"abstract":"<div><p>Let <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. We show that there is an isomorphism from any separable unital subalgebra of <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>/</mo><mi>K</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> onto a subalgebra of <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>/</mo><mi>K</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span> that preserves the Fredholm index. As a consequence, every separable <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra is isomorphic to a subalgebra of <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo><mo>/</mo><mi>K</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span>. Another consequence is the existence of operators on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> that behave like the essentially normal operators with arbitrary Fredholm indices in the Brown-Douglas-Fillmore theory.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110669"},"PeriodicalIF":1.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical-space estimates for axisymmetric waves on extremal Kerr spacetime","authors":"Elena Giorgi, Jingbo Wan","doi":"10.1016/j.jfa.2024.110668","DOIUrl":"10.1016/j.jfa.2024.110668","url":null,"abstract":"<div><p>We study axisymmetric solutions to the wave equation on extremal Kerr backgrounds and obtain integrated local energy decay (or Morawetz estimates) through an analysis <em>exclusively in physical-space</em>. Boundedness of the energy and Morawetz estimates for axisymmetric waves in extremal Kerr were first obtained by Aretakis <span><span>[13]</span></span> through the construction of frequency-localized currents used in particular to express the trapping degeneracy. Here we extend to extremal Kerr a method introduced by Stogin <span><span>[63]</span></span> in the sub-extremal case, simplifying Aretakis' derivation of Morawetz estimates through purely classical currents.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110668"},"PeriodicalIF":1.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucrezia Cossetti , Luca Fanelli , David Krejčiřík
{"title":"Uniform resolvent estimates and absence of eigenvalues of biharmonic operators with complex potentials","authors":"Lucrezia Cossetti , Luca Fanelli , David Krejčiřík","doi":"10.1016/j.jfa.2024.110646","DOIUrl":"10.1016/j.jfa.2024.110646","url":null,"abstract":"<div><p>We quantify the subcriticality of the bilaplacian in dimensions greater than four by providing explicit repulsivity/smallness conditions on complex additive perturbations under which the spectrum remains stable. Our assumptions cover critical Rellich-type potentials too. As a byproduct we obtain uniform resolvent estimates in weighted spaces. Some of the results are new also in the self-adjoint setting.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110646"},"PeriodicalIF":1.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003343/pdfft?md5=772332e832e0b3b3742e9fe5c59bd027&pid=1-s2.0-S0022123624003343-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}