Time periodic and almost periodic viscosity solutions of contact Hamilton-Jacobi equations on Tn

IF 1.7 2区 数学 Q1 MATHEMATICS
Kaizhi Wang , Jun Yan , Kai Zhao
{"title":"Time periodic and almost periodic viscosity solutions of contact Hamilton-Jacobi equations on Tn","authors":"Kaizhi Wang ,&nbsp;Jun Yan ,&nbsp;Kai Zhao","doi":"10.1016/j.jfa.2025.111121","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns with the time periodic viscosity solution problem for a class of evolutionary contact Hamilton-Jacobi equations with time independent Hamiltonians on the torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Under certain suitable assumptions we show that the equation has a non-trivial <em>T</em>-periodic viscosity solution if and only if <span><math><mi>T</mi><mo>∈</mo><mi>D</mi></math></span>, where <em>D</em> is a dense subset of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>. Moreover, we clarify the structure of <em>D</em>. As a consequence, we also study the existence of Bohr almost periodic viscosity solutions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111121"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003039","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns with the time periodic viscosity solution problem for a class of evolutionary contact Hamilton-Jacobi equations with time independent Hamiltonians on the torus Tn. Under certain suitable assumptions we show that the equation has a non-trivial T-periodic viscosity solution if and only if TD, where D is a dense subset of [0,+). Moreover, we clarify the structure of D. As a consequence, we also study the existence of Bohr almost periodic viscosity solutions.
Tn上接触Hamilton-Jacobi方程的时间周期和概周期粘性解
本文研究了环面Tn上一类具有时间无关哈密顿量的演化接触Hamilton-Jacobi方程的时间周期黏性解问题。在一定的假设条件下,我们证明了该方程具有非平凡的T周期黏性解当且仅当T∈D,其中D是[0,+∞)的密集子集。此外,我们还澄清了d的结构。因此,我们还研究了玻尔几乎周期粘度解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信