Hausdorffness of certain nilpotent cohomology spaces

IF 1.7 2区 数学 Q1 MATHEMATICS
Fabian Januszewski , Binyong Sun , Hao Ying
{"title":"Hausdorffness of certain nilpotent cohomology spaces","authors":"Fabian Januszewski ,&nbsp;Binyong Sun ,&nbsp;Hao Ying","doi":"10.1016/j.jfa.2025.111120","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> be a smooth representation of a compact Lie group <em>G</em> on a quasi-complete locally convex complex topological vector space. We show that the Lie algebra cohomology space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>•</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> and the Lie algebra homology space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>•</mo></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> are both Hausdorff, where <span><math><mi>u</mi></math></span> is the nilpotent radical of a parabolic subalgebra of the complexified Lie algebra <span><math><mi>g</mi></math></span> of <em>G</em>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111120"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003027","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (π,V) be a smooth representation of a compact Lie group G on a quasi-complete locally convex complex topological vector space. We show that the Lie algebra cohomology space H(u,V) and the Lie algebra homology space H(u,V) are both Hausdorff, where u is the nilpotent radical of a parabolic subalgebra of the complexified Lie algebra g of G.
某些幂零上同调空间的豪斯多夫性
设(π,V)是拟完全局部凸复拓扑向量空间上紧李群G的光滑表示。证明了李代数上同调空间H•(u,V)和李代数上同调空间H•(u,V)都是Hausdorff,其中u是复化李代数g (g)的抛物子代数的幂零根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信