{"title":"Phase space analysis of finite and infinite dimensional Fresnel integrals","authors":"Sonia Mazzucchi , Fabio Nicola , S. Ivan Trapasso","doi":"10.1016/j.jfa.2025.111009","DOIUrl":null,"url":null,"abstract":"<div><div>The full characterization of the class of Fresnel integrable functions is an open problem in functional analysis, with significant applications to mathematical physics (Feynman path integrals) and the analysis of the Schrödinger equation. In finite dimension, we prove the Fresnel integrability of functions in the Sjöstrand class <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow></msup></math></span> — a family of continuous and bounded functions, locally enjoying the mild regularity of the Fourier transform of an integrable function. This result broadly extends the current knowledge on the Fresnel integrability of Fourier transforms of finite complex measures, and relies upon ideas and techniques of Gabor wave packet analysis. We also discuss infinite-dimensional extensions of this result. In this connection, we extend and make more concrete the general framework of projective functional extensions introduced by Albeverio and Mazzucchi. In particular, we obtain a concrete example of a continuous linear functional on an infinite-dimensional space beyond the class of Fresnel integrable functions. As an interesting byproduct, we obtain a sharp <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> operator norm bound for the free Schrödinger evolution operator.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111009"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001910","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The full characterization of the class of Fresnel integrable functions is an open problem in functional analysis, with significant applications to mathematical physics (Feynman path integrals) and the analysis of the Schrödinger equation. In finite dimension, we prove the Fresnel integrability of functions in the Sjöstrand class — a family of continuous and bounded functions, locally enjoying the mild regularity of the Fourier transform of an integrable function. This result broadly extends the current knowledge on the Fresnel integrability of Fourier transforms of finite complex measures, and relies upon ideas and techniques of Gabor wave packet analysis. We also discuss infinite-dimensional extensions of this result. In this connection, we extend and make more concrete the general framework of projective functional extensions introduced by Albeverio and Mazzucchi. In particular, we obtain a concrete example of a continuous linear functional on an infinite-dimensional space beyond the class of Fresnel integrable functions. As an interesting byproduct, we obtain a sharp operator norm bound for the free Schrödinger evolution operator.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis