Phase space analysis of finite and infinite dimensional Fresnel integrals

IF 1.7 2区 数学 Q1 MATHEMATICS
Sonia Mazzucchi , Fabio Nicola , S. Ivan Trapasso
{"title":"Phase space analysis of finite and infinite dimensional Fresnel integrals","authors":"Sonia Mazzucchi ,&nbsp;Fabio Nicola ,&nbsp;S. Ivan Trapasso","doi":"10.1016/j.jfa.2025.111009","DOIUrl":null,"url":null,"abstract":"<div><div>The full characterization of the class of Fresnel integrable functions is an open problem in functional analysis, with significant applications to mathematical physics (Feynman path integrals) and the analysis of the Schrödinger equation. In finite dimension, we prove the Fresnel integrability of functions in the Sjöstrand class <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow></msup></math></span> — a family of continuous and bounded functions, locally enjoying the mild regularity of the Fourier transform of an integrable function. This result broadly extends the current knowledge on the Fresnel integrability of Fourier transforms of finite complex measures, and relies upon ideas and techniques of Gabor wave packet analysis. We also discuss infinite-dimensional extensions of this result. In this connection, we extend and make more concrete the general framework of projective functional extensions introduced by Albeverio and Mazzucchi. In particular, we obtain a concrete example of a continuous linear functional on an infinite-dimensional space beyond the class of Fresnel integrable functions. As an interesting byproduct, we obtain a sharp <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>∞</mo><mo>,</mo><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> operator norm bound for the free Schrödinger evolution operator.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 111009"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001910","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The full characterization of the class of Fresnel integrable functions is an open problem in functional analysis, with significant applications to mathematical physics (Feynman path integrals) and the analysis of the Schrödinger equation. In finite dimension, we prove the Fresnel integrability of functions in the Sjöstrand class M,1 — a family of continuous and bounded functions, locally enjoying the mild regularity of the Fourier transform of an integrable function. This result broadly extends the current knowledge on the Fresnel integrability of Fourier transforms of finite complex measures, and relies upon ideas and techniques of Gabor wave packet analysis. We also discuss infinite-dimensional extensions of this result. In this connection, we extend and make more concrete the general framework of projective functional extensions introduced by Albeverio and Mazzucchi. In particular, we obtain a concrete example of a continuous linear functional on an infinite-dimensional space beyond the class of Fresnel integrable functions. As an interesting byproduct, we obtain a sharp M,1L operator norm bound for the free Schrödinger evolution operator.
有限维和无限维菲涅耳积分的相空间分析
菲涅耳可积函数类的完整表征是泛函分析中的一个开放问题,在数学物理(费曼路径积分)和Schrödinger方程的分析中具有重要应用。在有限维条件下,证明了Sjöstrand M∞类函数的菲涅耳可积性,1 -一类连续有界函数,局部具有可积函数傅里叶变换的温和正则性。这一结果广泛地扩展了有限复测度傅里叶变换的菲涅耳可积性的现有知识,并依赖于Gabor波包分析的思想和技术。我们还讨论了这个结果的无限维推广。在此基础上,我们扩展并具体化了Albeverio和Mazzucchi提出的射影泛函扩展的一般框架。特别地,我们得到了无限维空间上菲涅耳可积函数以外的连续线性泛函的一个具体例子。作为一个有趣的副产品,我们得到了自由Schrödinger演化算子的一个锐利的M∞,1→L∞算子范数界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信