Operators on injective tensor products of separable Banach spaces and spaces with few operators

IF 1.6 2区 数学 Q1 MATHEMATICS
Antonio Acuaviva
{"title":"Operators on injective tensor products of separable Banach spaces and spaces with few operators","authors":"Antonio Acuaviva","doi":"10.1016/j.jfa.2025.111203","DOIUrl":null,"url":null,"abstract":"<div><div>We give a characterization of the operators on the injective tensor product <span><math><mi>E</mi><msub><mrow><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>ε</mi></mrow></msub><mi>X</mi></math></span> for any separable Banach space <em>E</em> and any (non-separable) Banach space <em>X</em> with few operators, in the sense that any operator <span><math><mi>T</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span> takes the form <span><math><mi>T</mi><mo>=</mo><mi>λ</mi><mi>I</mi><mo>+</mo><mi>S</mi></math></span> for a scalar <span><math><mi>λ</mi><mo>∈</mo><mi>K</mi></math></span> and an operator <em>S</em> with separable range. This is used to give a classification of the complemented subspaces and closed operator ideals of spaces of the form <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ω</mi><mo>×</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> is a locally compact Hausdorff space induced by an almost disjoint family <span><math><mi>A</mi></math></span> such that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>)</mo></math></span> has few operators.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111203"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003854","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a characterization of the operators on the injective tensor product EˆεX for any separable Banach space E and any (non-separable) Banach space X with few operators, in the sense that any operator T:XX takes the form T=λI+S for a scalar λK and an operator S with separable range. This is used to give a classification of the complemented subspaces and closed operator ideals of spaces of the form C0(ω×KA), where KA is a locally compact Hausdorff space induced by an almost disjoint family A such that C0(KA) has few operators.
可分Banach空间和少算子空间的内射张量积上的算子
给出了任意可分巴拿赫空间E和任意(不可分)巴拿赫空间X上算子E⊗ ̄εX的刻划,即对于标量λ∈K和值域可分的算子S,任意算子T:X→X取T=λ i +S的形式。本文给出了形式为C0(ω×KA)的空间的补子空间和闭算子理想的分类,其中KA是由几乎不相交族a诱导的局部紧化Hausdorff空间,使得C0(KA)几乎没有算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信