Non-rigidity of the absolutely continuous part of A-free measures

IF 1.6 2区 数学 Q1 MATHEMATICS
Luigi De Masi , Carlo Gasparetto
{"title":"Non-rigidity of the absolutely continuous part of A-free measures","authors":"Luigi De Masi ,&nbsp;Carlo Gasparetto","doi":"10.1016/j.jfa.2025.111114","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize a result by Alberti, showing that, if a first-order linear differential operator <span><math><mi>A</mi></math></span> belongs to a certain class, then any <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> function is the absolutely continuous part of a measure <em>μ</em> satisfying <span><math><mi>A</mi><mi>μ</mi><mo>=</mo><mn>0</mn></math></span>. When <span><math><mi>A</mi></math></span> is scalar valued, we provide a necessary and sufficient condition for the above property to hold true and we prove dimensional estimates on the singular part of <em>μ</em>. Finally, we show that operators in the above class satisfy a Lusin-type property.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111114"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002964","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize a result by Alberti, showing that, if a first-order linear differential operator A belongs to a certain class, then any L1 function is the absolutely continuous part of a measure μ satisfying Aμ=0. When A is scalar valued, we provide a necessary and sufficient condition for the above property to hold true and we prove dimensional estimates on the singular part of μ. Finally, we show that operators in the above class satisfy a Lusin-type property.
非刚性部分的绝对连续无a措施
我们推广了Alberti的一个结果,证明如果一阶线性微分算子a属于某一类,则任意L1函数都是满足μ=0的测度μ的绝对连续部分。当A为标量值时,给出了上述性质成立的充分必要条件,并证明了μ的奇异部分上的量纲估计。最后,我们证明了上述类中的操作符满足lusin类型的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信