Leilei Cui , Changfeng Gui , Haicheng Yan , Wen Yang
{"title":"具有变符号函数的闭偶维流形上的临界规定q曲率流","authors":"Leilei Cui , Changfeng Gui , Haicheng Yan , Wen Yang","doi":"10.1016/j.jfa.2025.111133","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we consider the prescribed <em>Q</em>-curvature equation<span><span><span><math><mi>P</mi><mi>u</mi><mo>=</mo><mi>ρ</mi><mrow><mo>(</mo><mfrac><mrow><mi>h</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>n</mi><mi>u</mi></mrow></msup></mrow><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>M</mi></mrow></msub><mi>h</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>n</mi><mi>u</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>M</mi><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>M</mi><mo>,</mo></math></span></span></span> where <span><math><mo>(</mo><mi>M</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> is a closed 2<em>n</em>-dimensional Riemannian manifold, <span><math><mi>P</mi></math></span> represents the GJMS operator, which is (weakly) positive with a kernel of constant functions. The function <em>h</em> is smooth and sign-changing, while <em>ρ</em> is a positive constant. In the critical case with <span><math><mi>ρ</mi><mo>=</mo><msup><mrow><mn>4</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>!</mo><msup><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we employ a negative gradient-like flow method to establish the existence of solutions to this prescribed <em>Q</em>-curvature equation. Our approach extends the work of Li-Xu <span><span>[46]</span></span>, which focused on dimension 2, to general even dimensions. This result can also be viewed as a counterpart to <span><span>[8]</span></span> in the case where <em>h</em> is a sign-changing function.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111133"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical prescribed Q-curvature flow on closed even-dimensional manifolds with sign-changing functions\",\"authors\":\"Leilei Cui , Changfeng Gui , Haicheng Yan , Wen Yang\",\"doi\":\"10.1016/j.jfa.2025.111133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we consider the prescribed <em>Q</em>-curvature equation<span><span><span><math><mi>P</mi><mi>u</mi><mo>=</mo><mi>ρ</mi><mrow><mo>(</mo><mfrac><mrow><mi>h</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>n</mi><mi>u</mi></mrow></msup></mrow><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>M</mi></mrow></msub><mi>h</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>n</mi><mi>u</mi></mrow></msup><mi>d</mi><mi>μ</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>M</mi><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>M</mi><mo>,</mo></math></span></span></span> where <span><math><mo>(</mo><mi>M</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> is a closed 2<em>n</em>-dimensional Riemannian manifold, <span><math><mi>P</mi></math></span> represents the GJMS operator, which is (weakly) positive with a kernel of constant functions. The function <em>h</em> is smooth and sign-changing, while <em>ρ</em> is a positive constant. In the critical case with <span><math><mi>ρ</mi><mo>=</mo><msup><mrow><mn>4</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>!</mo><msup><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, we employ a negative gradient-like flow method to establish the existence of solutions to this prescribed <em>Q</em>-curvature equation. Our approach extends the work of Li-Xu <span><span>[46]</span></span>, which focused on dimension 2, to general even dimensions. This result can also be viewed as a counterpart to <span><span>[8]</span></span> in the case where <em>h</em> is a sign-changing function.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 11\",\"pages\":\"Article 111133\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003155\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003155","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Critical prescribed Q-curvature flow on closed even-dimensional manifolds with sign-changing functions
In this article, we consider the prescribed Q-curvature equation where is a closed 2n-dimensional Riemannian manifold, represents the GJMS operator, which is (weakly) positive with a kernel of constant functions. The function h is smooth and sign-changing, while ρ is a positive constant. In the critical case with , we employ a negative gradient-like flow method to establish the existence of solutions to this prescribed Q-curvature equation. Our approach extends the work of Li-Xu [46], which focused on dimension 2, to general even dimensions. This result can also be viewed as a counterpart to [8] in the case where h is a sign-changing function.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis