{"title":"Spectra of Cantor measures with consecutive digit sets revisited","authors":"Yan-Song Fu , Chuntai Liu","doi":"10.1016/j.jfa.2025.111111","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> be the self-similar measure satisfying <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>φ</mi></mrow><mrow><mi>j</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>b</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>j</mi></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>j</mi><mo><</mo><mi>q</mi></math></span> and <span><math><mn>2</mn><mo>≤</mo><mi>q</mi><mo><</mo><mi>b</mi><mo>∈</mo><mi>Z</mi></math></span> such that <span><math><mi>q</mi><mo>|</mo><mi>b</mi></math></span>. This paper will analyze the orthonormal bases of exponential functions for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>)</mo></math></span>. We present a sufficient and necessary condition for discrete sets to be maximal orthogonal sets and a sufficient condition for maximal orthogonal sets to be bases in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>)</mo></math></span> which generalizes the main results of Dutkay, Han and Sun (2009) for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span>. Finally, a complete characterization on the structure of spectra for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> is given in the viewpoint of measure and dimension which generalizes one of the main results of Deng, Fu and Kang (2024).</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111111"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002939","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the self-similar measure satisfying , where , and such that . This paper will analyze the orthonormal bases of exponential functions for . We present a sufficient and necessary condition for discrete sets to be maximal orthogonal sets and a sufficient condition for maximal orthogonal sets to be bases in which generalizes the main results of Dutkay, Han and Sun (2009) for . Finally, a complete characterization on the structure of spectra for is given in the viewpoint of measure and dimension which generalizes one of the main results of Deng, Fu and Kang (2024).
设μb,q为满足μb,q(⋅)=1q∑j=0q−1μb,q(φj−1(⋅))的自相似测度,其中φj(x)=xb+jq, 0≤j<q, 2≤q<b∈Z,使得q|b。本文将分析L2(μb,q)的指数函数的标准正交基。推广了Dutkay, Han and Sun(2009)关于μ4,2的主要结果,给出了离散集是极大正交集的充要条件和极大正交集是L2(μb,q)中的基的充要条件。最后,从测度和维数的角度给出了μb,q的光谱结构的完整表征,推广了Deng, Fu和Kang(2024)的主要成果之一。
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis