Spectra of Cantor measures with consecutive digit sets revisited

IF 1.7 2区 数学 Q1 MATHEMATICS
Yan-Song Fu , Chuntai Liu
{"title":"Spectra of Cantor measures with consecutive digit sets revisited","authors":"Yan-Song Fu ,&nbsp;Chuntai Liu","doi":"10.1016/j.jfa.2025.111111","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> be the self-similar measure satisfying <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>φ</mi></mrow><mrow><mi>j</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>φ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>b</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>j</mi></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>j</mi><mo>&lt;</mo><mi>q</mi></math></span> and <span><math><mn>2</mn><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mi>b</mi><mo>∈</mo><mi>Z</mi></math></span> such that <span><math><mi>q</mi><mo>|</mo><mi>b</mi></math></span>. This paper will analyze the orthonormal bases of exponential functions for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>)</mo></math></span>. We present a sufficient and necessary condition for discrete sets to be maximal orthogonal sets and a sufficient condition for maximal orthogonal sets to be bases in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>)</mo></math></span> which generalizes the main results of Dutkay, Han and Sun (2009) for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span>. Finally, a complete characterization on the structure of spectra for <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>q</mi></mrow></msub></math></span> is given in the viewpoint of measure and dimension which generalizes one of the main results of Deng, Fu and Kang (2024).</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 10","pages":"Article 111111"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002939","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let μb,q be the self-similar measure satisfying μb,q()=1qj=0q1μb,q(φj1()), where φj(x)=xb+jq, 0j<q and 2q<bZ such that q|b. This paper will analyze the orthonormal bases of exponential functions for L2(μb,q). We present a sufficient and necessary condition for discrete sets to be maximal orthogonal sets and a sufficient condition for maximal orthogonal sets to be bases in L2(μb,q) which generalizes the main results of Dutkay, Han and Sun (2009) for μ4,2. Finally, a complete characterization on the structure of spectra for μb,q is given in the viewpoint of measure and dimension which generalizes one of the main results of Deng, Fu and Kang (2024).
对连续数集康托测度谱的重新研究
设μb,q为满足μb,q(⋅)=1q∑j=0q−1μb,q(φj−1(⋅))的自相似测度,其中φj(x)=xb+jq, 0≤j<q, 2≤q<b∈Z,使得q|b。本文将分析L2(μb,q)的指数函数的标准正交基。推广了Dutkay, Han and Sun(2009)关于μ4,2的主要结果,给出了离散集是极大正交集的充要条件和极大正交集是L2(μb,q)中的基的充要条件。最后,从测度和维数的角度给出了μb,q的光谱结构的完整表征,推广了Deng, Fu和Kang(2024)的主要成果之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信