Computation of weighted Bergman inner products on bounded symmetric domains and restriction to subgroups II

IF 1.6 2区 数学 Q1 MATHEMATICS
Ryosuke Nakahama
{"title":"Computation of weighted Bergman inner products on bounded symmetric domains and restriction to subgroups II","authors":"Ryosuke Nakahama","doi":"10.1016/j.jfa.2025.111131","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mi>D</mi><mo>=</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span>, realized as bounded symmetric domains in complex vector spaces <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>⊂</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> respectively. Then the universal covering group <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> of <em>G</em> acts unitarily on the weighted Bergman space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>⊂</mo><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> on <em>D</em>. Its restriction to the subgroup <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-decomposition of the space <span><math><mi>P</mi><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span> of polynomials on the orthogonal complement <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> of <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> in <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>. The object of this article is to construct explicitly <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span>-intertwining operators (symmetry breaking operators) <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>λ</mi></mrow></msub><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo><mo>)</mo></math></span> from holomorphic discrete series representations of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> to those of <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span>, which are unique up to constant multiple for sufficiently large <em>λ</em>. These operators are given by differential operators whose symbols are computed as the inner products of polynomials on <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>. In this article, we treat the case <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> are both simple of tube type and <span><math><mi>rank</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>rank</mi><mspace></mspace><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>. When <span><math><mi>rank</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mn>3</mn></math></span>, we treat all partitions <strong>k</strong>, and when <span><math><mi>rank</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is general, we treat partitions of the form <span><math><mi>k</mi><mo>=</mo><mo>(</mo><mi>k</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>−</mo><mi>l</mi><mo>)</mo></math></span>. This article is a continuation of the author's previous article <span><span>[38]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111131"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (G,G1) be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces D1=G1/K1D=G/K, realized as bounded symmetric domains in complex vector spaces p1+p+ respectively. Then the universal covering group G˜ of G acts unitarily on the weighted Bergman space Hλ(D)O(D) on D. Its restriction to the subgroup G˜1 decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the K1-decomposition of the space P(p2+) of polynomials on the orthogonal complement p2+ of p1+ in p+. The object of this article is to construct explicitly G˜1-intertwining operators (symmetry breaking operators) Hλ(D)|G˜1Hε1λ(D1,Pk(p2+)) from holomorphic discrete series representations of G˜ to those of G˜1, which are unique up to constant multiple for sufficiently large λ. These operators are given by differential operators whose symbols are computed as the inner products of polynomials on p2+. In this article, we treat the case p+,p2+ are both simple of tube type and rankp+=rankp2+. When rankp+=3, we treat all partitions k, and when rankp+ is general, we treat partitions of the form k=(k,,k,kl). This article is a continuation of the author's previous article [38].
有界对称域上加权Bergman内积的计算及对子群的限制
设(G,G1)是全纯型对称对,我们考虑一对厄密对称空间D1=G1/K1∧D=G/K,分别实现为复向量空间p1+∧p+中的有界对称域。然后G的全称覆盖群G ~统一作用于D上的加权Bergman空间Hλ(D)∧O(D)上,其对子群G ~ 1的限制离散地、自由地分解,其分支律由hua - kostant - sch米德- kobayashi公式根据P +中p1+的正交补p2+上多项式空间P(p2+)的k1分解明确给出。本文的目的是从G ~的全纯离散级数表示到G ~ 1的全纯离散级数表示构造出明确的G ~ 1-交错算子(对称破缺算子)Hλ(D)|G ~ 1→Hε1λ(D1,Pk(p2+)),在λ足够大的情况下直到常数倍都是唯一的。这些算子由微分算子给出,微分算子的符号计算为p2+上多项式的内积。在本文中,我们处理p+,p2+都是简单管型且rankp+=rankp2+的情况。当rankp+=3时,我们处理所有分区k,当rankp+是一般分区时,我们处理k=(k,…,k,k−1)的分区。本文是作者上一篇文章[38]的延续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信