{"title":"Computation of weighted Bergman inner products on bounded symmetric domains and restriction to subgroups II","authors":"Ryosuke Nakahama","doi":"10.1016/j.jfa.2025.111131","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mi>D</mi><mo>=</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span>, realized as bounded symmetric domains in complex vector spaces <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>⊂</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> respectively. Then the universal covering group <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> of <em>G</em> acts unitarily on the weighted Bergman space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><mo>⊂</mo><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> on <em>D</em>. Its restriction to the subgroup <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-decomposition of the space <span><math><mi>P</mi><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span> of polynomials on the orthogonal complement <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> of <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> in <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>. The object of this article is to construct explicitly <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span>-intertwining operators (symmetry breaking operators) <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo><msub><mrow><mo>|</mo></mrow><mrow><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>λ</mi></mrow></msub><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo><mo>)</mo></math></span> from holomorphic discrete series representations of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> to those of <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span>, which are unique up to constant multiple for sufficiently large <em>λ</em>. These operators are given by differential operators whose symbols are computed as the inner products of polynomials on <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>. In this article, we treat the case <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> are both simple of tube type and <span><math><mi>rank</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>rank</mi><mspace></mspace><msubsup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>. When <span><math><mi>rank</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mn>3</mn></math></span>, we treat all partitions <strong>k</strong>, and when <span><math><mi>rank</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is general, we treat partitions of the form <span><math><mi>k</mi><mo>=</mo><mo>(</mo><mi>k</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>−</mo><mi>l</mi><mo>)</mo></math></span>. This article is a continuation of the author's previous article <span><span>[38]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111131"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces , realized as bounded symmetric domains in complex vector spaces respectively. Then the universal covering group of G acts unitarily on the weighted Bergman space on D. Its restriction to the subgroup decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the -decomposition of the space of polynomials on the orthogonal complement of in . The object of this article is to construct explicitly -intertwining operators (symmetry breaking operators) from holomorphic discrete series representations of to those of , which are unique up to constant multiple for sufficiently large λ. These operators are given by differential operators whose symbols are computed as the inner products of polynomials on . In this article, we treat the case are both simple of tube type and . When , we treat all partitions k, and when is general, we treat partitions of the form . This article is a continuation of the author's previous article [38].
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis