Geometric influences on quantum Boolean cubes

IF 1.7 2区 数学 Q1 MATHEMATICS
David P. Blecher , Li Gao , Bang Xu
{"title":"Geometric influences on quantum Boolean cubes","authors":"David P. Blecher ,&nbsp;Li Gao ,&nbsp;Bang Xu","doi":"10.1016/j.jfa.2025.111132","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study three problems related to the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-influence on quantum Boolean cubes. In the first place, we obtain a dimension free bound for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-influence, which implies the quantum <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-KKL Theorem result obtained by Rouzé, Wirth and Zhang. Beyond that, we also obtain a high order quantum Talagrand inequality and quantum <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-KKL theorem. Lastly, we prove a quantitative relation between the noise stability and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-influence. To this end, our technique involves the random restrictions method as well as semigroup theory.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 11","pages":"Article 111132"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003143","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study three problems related to the L1-influence on quantum Boolean cubes. In the first place, we obtain a dimension free bound for L1-influence, which implies the quantum L1-KKL Theorem result obtained by Rouzé, Wirth and Zhang. Beyond that, we also obtain a high order quantum Talagrand inequality and quantum L1-KKL theorem. Lastly, we prove a quantitative relation between the noise stability and L1-influence. To this end, our technique involves the random restrictions method as well as semigroup theory.
几何对量子布尔立方体的影响
在这项工作中,我们研究了与l1对量子布尔立方体的影响有关的三个问题。首先,我们得到了l1影响的一个维数自由界,它蕴涵了rouz、Wirth和Zhang所得到的量子L1-KKL定理的结果。除此之外,我们还得到了一个高阶量子塔拉格兰不等式和量子L1-KKL定理。最后,我们证明了噪声稳定性与l1影响之间的定量关系。为此,我们的技术涉及到随机限制方法和半群理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信